The increase of mental health problems and the need for effective medical health care have led to an investigation of machine learning that can be applied in mental health problems. This paper presents a recent systematic review of machine learning approaches in predicting mental health problems. Furthermore, we will discuss the challenges, limitations, and future directions for the application of machine learning in the mental health field. We collect research articles and studies that are related to the machine learning approaches in predicting mental health problems by searching reliable databases. Moreover, we adhere to the PRISMA methodology in conducting this systematic review. We include a total of 30 research articles in this review after the screening and identification processes. Then, we categorize the collected research articles based on the mental health problems such as schizophrenia, bipolar disorder, anxiety and depression, posttraumatic stress disorder, and mental health problems among children. Discussing the findings, we reflect on the challenges and limitations faced by the researchers on machine learning in mental health problems. Additionally, we provide concrete recommendations on the potential future research and development of applying machine learning in the mental health field.
Early prediction of mental health issues among individuals is paramount for early diagnosis and treatment by mental health professionals. One of the promising approaches to achieving fully automated computer-based approaches for predicting mental health problems is via machine learning. As such, this study aims to empirically evaluate several popular machine learning algorithms in classifying and predicting mental health problems based on a given data set, both from a single classifier approach as well as an ensemble machine learning approach. The data set contains responses to a survey questionnaire that was conducted by Open Sourcing Mental Illness (OSMI). Machine learning algorithms investigated in this study include Logistic Regression, Gradient Boosting, Neural Networks, K-Nearest Neighbours, and Support Vector Machine, as well as an ensemble approach using these algorithms. Comparisons were also made against more recent machine learning approaches, namely Extreme Gradient Boosting and Deep Neural Networks. Overall, Gradient Boosting achieved the highest overall accuracy of 88.80% followed by Neural Networks with 88.00%. This was followed by Extreme Gradient Boosting and Deep Neural Networks at 87.20% and 86.40%, respectively. The ensemble classifier achieved 85.60% while the remaining classifiers achieved between 82.40 and 84.00%. The findings indicate that Gradient Boosting provided the highest classification accuracy for this particular mental health bi-classification prediction task. In general, it was also demonstrated that the prediction results produced by all of the machine learning approaches studied here were able to achieve more than 80% accuracy, thereby indicating a highly promising approach for mental health professionals toward automated clinical diagnosis.
With the rapid growth in the number of social media users, the reported cases of phishing attack on social media are also increasing. Phishing is an attack that takes advantage of users' trust, attempts to deceive the victim into compromising their credentials. This review paper presents the factor that causes social media sites to become the favorite target for cybercriminals to deploy phishing attacks. Apart from that, this paper also studies the countermeasures in protecting social media users from phishing attacks by reviewing existing works to highlight the current issues as well as provide a perspective for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.