CMT is the most common inherited neuropathy. At present, 43 CMT genes are known, and an examination of all known genes would probably only identify mutations in approximately 50% of those with CMT. Thus, it is probable that at least 30-50 CMT genes are yet to be identified.
BackgroundPoint mutations in the mitofusin 2 (MFN2) gene has been identified exclusively in Charcot-Marie-Tooth type 2 (CMT2), and in a single family with intermediate CMT. MFN2 point mutations are probably the most common cause of CMT2.MethodsTwo-hundred and thirty-two consecutive unselected and unrelated CMT families with available DNA from all regions in Norway were included. We screened for point mutations in the MFN2 gene.ResultsWe identified four known and three novel point mutations in 8 unrelated CMT families. The novel point mutations were not found in 100 healthy controls. This corresponds to 3.4% (8/232) of CMT families have point mutations in the MFN2 gene. The phenotypes were compatible with CMT1 in two families, CMT2 in four families, intermediate CMT in one family and distal Hereditary Motor Neuropathy (dHMN) in one family. This corresponds to 2.3% of CMT1, 5.5% of CMT2, 12.5% of intermediate CMT and 6.7% of dHMN families have a point mutation in the MFN2 gene. Point mutations in the MFN2 gene is likely to be the fourth most common cause to CMT after duplication of the peripheral myelin protein 22 (PMP22) gene, and point mutations in the Connexin32 (Cx32) and myelin protein zero (MPZ) genes.ConclusionsThe identified known and novel point mutations in the MFN2 gene expand the clinical spectrum from CMT2 and intermediate CMT to also include possibly CMT1 and the dHMN phenotypes. Thus, genetic analyses of the MFN2 gene should not be restricted to persons with CMT2.
Background: X-linked Charcot-Marie Tooth (CMT) is caused by mutations in the connexin32 gene that encodes a polypeptide which is arranged in hexameric array and form gap junctions.
The twins were employed in PVC production and developed symptoms after 14 years of massive exposure. We think that the heavy exposure to various neurotoxic compounds caused symptoms that mimic late-onset CMT. However, the twins had distal dysesthesia which is unusual in inherited neuropathies. This illustrates the importance of an occupational history even in the molecular genetic era.
BackgroundThe Charcot-Marie-Tooth (CMT) phenotype caused by mutation in the myelin protein zero (MPZ) gene varies considerably, from early onset and severe forms to late onset and milder forms. The mechanism is not well understood. The myelin protein zero (P0) mediates adhesion in the spiral wraps of the Schwann cell's myelin sheath. The crystalline structure of the extracellular domain of the myelin protein zero (P0ex) is known, while the transmembrane and intracellular structure is unknown.FindingsOne novel missense mutation caused a milder late onset CMT type 2, while the second missense mutation caused a severe early onset phenotype compatible with Déjérine-Sottas syndrome.ConclusionsThe phenotypic variation caused by different missense mutations in the MPZ gene is likely caused by different conformational changes of the MPZ protein which affects the functional tetramers. Severe changes of the MPZ protein cause dysfunctional tetramers and predominantly uncompacted myelin, i.e. the severe phenotypes congenital hypomyelinating neuropathy and Déjérine-Sottas syndrome, while milder changes cause the phenotypes CMT type 1 and 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.