Rice, one of the world's most important food plants, has important syntenic relationships with the other cereal species and is a model plant for the grasses. Here we present a map-based, finished quality sequence that covers 95% of the 389 Mb genome, including virtually all of the euchromatin and two complete centromeres. A total of 37,544 nontransposable-element-related protein-coding genes were identified, of which 71% had a putative homologue in Arabidopsis. In a reciprocal analysis, 90% of the Arabidopsis proteins had a putative homologue in the predicted rice proteome. Twenty-nine per cent of the 37,544 predicted genes appear in clustered gene families. The number and classes of transposable elements found in the rice genome are consistent with the expansion of syntenic regions in the maize and sorghum genomes. We find evidence for widespread and recurrent gene transfer from the organelles to the nuclear chromosomes. The map-based sequence has proven useful for the identification of genes underlying agronomic traits. The additional single-nucleotide polymorphisms and simple sequence repeats identified in our study should accelerate improvements in rice production.
A r t i c l e s Theobroma cacao L. is a diploid tree fruit species (2n = 2x = 20 (ref. 1)) endemic to the South American rainforests. Cocoa was domesticated approximately 3,000 years ago 2 in Central America 3. The Criollo cocoa variety, having a nearly unique and homozygous genotype, was among the first to be cultivated 4. Criollo is now one of the two cocoa varieties providing fine flavor chocolate. However, due to its poor agronomic performance and disease susceptibility, more vigorous hybrids created with foreign (Forastero) genotypes have been introduced. These hybrids, named Trinitario, are now widely cultivated 5. Here we report the sequence of a Belizean Criollo plant 6. Consumers have shown an increased interest for high-quality chocolate, and for dark chocolate, containing a higher percentage of cocoa 7. Fine-cocoa production is nevertheless estimated to be less than 5% of the world cocoa production due to the low productivity and disease susceptibility of the traditional fine-flavor cocoa varieties. Therefore, breeding of improved Criollo varieties is important for sustainable production of fine-flavor cocoa. 3.7 million tons of cocoa are produced annually (see URLs). However, fungal, oomycete and viral diseases, as well as insect pests, are responsible for an estimated 30% of harvest losses (see URLs). Like many other tropical crops, knowledge of T. cacao genetics and genomics is limited. To accelerate progress in cocoa breeding and the understanding of its biochemistry, we sequenced and analyzed the genome
Amborella trichopoda is strongly supported as the single living species of the sister lineage to all other extant flowering plants, providing a unique reference for inferring the genome content and structure of the most recent common ancestor (MRCA) of living angiosperms. Sequencing the Amborella genome, we identified an ancient genome duplication predating angiosperm diversification, without evidence of subsequent, lineage-specific genome duplications. Comparisons between Amborella and other angiosperms facilitated reconstruction of the ancestral angiosperm gene content and gene order in the MRCA of core eudicots. We identify new gene families, gene duplications, and floral protein-protein interactions that first appeared in the ancestral angiosperm. Transposable elements in Amborella are ancient and highly divergent, with no recent transposon radiations. Population genomic analysis across Amborella's native range in New Caledonia reveals a recent genetic bottleneck and geographic structure with conservation implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.