3-Hydroxypropionic acid (3-HP) can be produced via the biological route involving two enzymatic reactions: dehydration of glycerol to 3-hydroxypropanal (3-HPA) and then oxidation to 3-HP. However, commercial production of 3-HP using recombinant microorganisms has been hampered with several problems, some of which are associated with the toxicity of 3-HPA and the efficiency of NAD+ regeneration. We engineered α-ketoglutaric semialdehyde dehydrogenase (KGSADH) from Azospirillum brasilense for the second reaction to address these issues. The residues in the binding sites for the substrates, 3-HPA and NAD+, were randomized, and the resulting libraries were screened for higher activity. Isolated KGSADH variants had significantly lower Km values for both the substrates. The enzymes also showed higher substrate specificities for aldehyde and NAD+, less inhibition by NADH, and greater resistance to inactivation by 3-HPA than the wild-type enzyme. A recombinant Pseudomonas denitrificans strain with one of the engineered KGSADH variants exhibited less accumulation of 3-HPA, decreased levels of inactivation of the enzymes, and higher cell growth than that with the wild-type KGSADH. The flask culture of the P. denitrificans strain with the mutant KGSADH resulted in about 40% increase of 3-HP titer (53 mM) compared with that using the wild-type enzyme (37 mM).
Coenzyme B 12-dependent glycerol dehydratase (GDHt) catalyzes the dehydration reaction of glycerol in the presence of adenosylcobalamin to yield 3-hydroxypropanal (3-HPA), which can be converted biologically to versatile platform chemicals such as 1,3-propanediol and 3-hydroxypropionic acid. Owing to the increased demand for biofuels, developing biological processes based on glycerol, which is a byproduct of biodiesel production, has attracted considerable attention recently. In this review, we will provide updates on the current understanding of the catalytic mechanism and structure of coenzyme B 12-dependent GDHt, and then summarize the results of engineering attempts, with perspectives on future directions in its engineering.
The development of novel anti-cancer drugs that induce apoptosis has long been a focus of drug discovery. Beta-lactam antibiotics have been used for over 60 years to fight bacterial infectious diseases with little or no side effects observed. Recently a new class of N-methylthiolated beta-lactams has been discovered that have potent activity against methicillin resistant Staphylococcus aureas. Most recently, we determined the potential effects of these N-thiolated beta-lactams on tumorigenic cell growth and found that they are apoptosis-inducers in human cancer cell lines. In the current study, we further determined the effects of the substitution of the O-methyl moiety on C3 and stereochemistry of the beta-lactams on the anti-proliferative and apoptosis-inducing abilities. We have found that lactam 18, in which C3 is substituted with an acrylate ester group, is a very effective proliferation inhibitor against human premalignant and malignant breast, leukemic, and simian virus 40-transformed fibroblast cells. Generally speaking, increasing the size of the moiety on C3 decreases its anti-proliferation potency, possibly indicating steric hindrance with the cellular target or decreased permeability through the cell membrane. We also found that the stereochemistry of the beta-lactams plays an important role in their potency. The 3S,4R isomers are more effective than their enantiomers (3R,4S), suggesting that 3S,4R configuration is more favorable for target interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.