The umbrella cells that line the bladder are mechanosensitive, and bladder filling increases the apical surface area of these cells; however, the upstream signals that regulate this process are unknown. Increased pressure stimulated ATP release from the isolated uroepithelium of rabbit bladders, which was blocked by inhibitors of vesicular transport, connexin hemichannels, ABC protein family members, and nucleoside transporters. Pressure-induced increases in membrane capacitance (a measure of apical plasma membrane surface area where 1 µF ≈ 1 cm 2 ) were inhibited by the serosal, but not mucosal, addition of apyrase or the purinergic receptor antagonist PPADS. Upon addition of purinergic receptor agonists, increased capacitance was observed even in the absence of pressure. Moreover, knockout mice lacking expression of P2X 2 and/or P2X 3 receptors failed to show increases in apical surface area when exposed to hydrostatic pressure. Treatments that prevented release of Ca 2+ from intracellular stores or activation of PKA blocked ATPγS-stimulated changes in capacitance. These results indicate that increased hydrostatic pressure stimulates release of ATP from the uroepithelium and that upon binding to P2X and possibly P2Y receptors on the umbrella cell, downstream Ca 2+ and PKA second messenger cascades may act to stimulate membrane insertion at the apical pole of these cells.
The effect of hydrostatic pressure on ion transport in the bladder uroepithelium was investigated. Isolated rabbit uroepithelium was mounted in modified Ussing chambers and mechanically stimulated by applying hydrostatic pressure across the mucosa. Increased hydrostatic pressure led to increased mucosal-to-serosal Na+ absorption across the uroepithelium via the amiloride-sensitive epithelial Na+ channel. In addition to this previously characterized pathway for Na+ absorption, hydrostatic pressure also induced the secretion of Cl- and K+ into the mucosal bathing solution under short-circuit conditions, which was confirmed by a net serosal-to-mucosal flux of 36Cl- and 86Rb+. K+ secretion was likely via a stretch-activated nonselective cation channel sensitive to 100 microM amiloride, 10 mM tetraethylammonium, 3 mM Ba2+, and 1 mM Gd3+. Hydrostatic pressure-induced ion transport in the uroepithelium may play important roles in electrolyte homeostasis, volume regulation, and mechanosensory transduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.