Cell culture is an essential tool for drug discovery, tissue engineering, and stem cell research. Conventional tissue culture produces two-dimensional (2D) cell growth with gene expression, signaling, and morphology that can differ from those in vivo and thus compromise clinical relevancy1–5. Here we report a three-dimensional (3D) culture of cells based on magnetic levitation in the presence of hydrogels containing gold and magnetic iron oxide (MIO) nanoparticles plus filamentous bacteriophage. This methodology allows for control of cell mass geometry and guided, multicellular clustering of different cell types in co-culture through spatial variance of the magnetic field. Moreover, magnetic levitation of human glioblastoma cells demonstrates similar protein expression profiles to those observed in human tumor xenografts. Taken together, these results suggest levitated 3D culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and allows for long-term multi-cellular studies.
Magnetic resonance imaging contrast agents are currently designed by modifying their structural and physiochemical properties in order to improve relaxivity and to enhance image contrast. Here we show a general method for increasing relaxivity by confining contrast agents inside the nanoporous structure of silicon particles. Magnevist, gadofullerenes and gadonanotubes were loaded inside the pores of quasi-hemispherical and discoidal particles. For all combinations of nanoconstructs, a boost in longitudinal proton relaxivity r1 was observed: for Magnevist, r1~14 mM-1s-1/Gd3+ion (~8.15×10+7 mM-1s-1/construct); for gadofullerenes, r1~200 mM-1s-1/Gd3+ion (~7×10+9 mM-1s-1/construct); for gadonanotubes, r1~150 mM-1s-1/Gd3+ion (~2×10+9 mM-1s-1/construct). These relaxivity values are about 4 to 50 times larger than that of clinically-available gadolinium-based agents (~4 mM-1s-1 /Gd3+ion). The enhancement in contrast is attributed to the geometrical confinement of the agents, which influences the paramagnetic behavior of the Gd3+ions. Thus, nanoscale confinement offers a new and general strategy for enhancing the contrast of gadolinium-based contrast agents.
Carbon nanotube (CNT) materials are of special interest as potential tools for biomedical applications. However, available toxicological data concerning single-walled carbon nanotubes (SWNTs) and multiwalled carbon nanotubes (MWNTs) remain contradictory. Here, we compared the effects of SWNTs as a function of dose, length, and surface chemistry in Swiss mice. Transmission electron microscopy (TEM), Raman, near-infrared (NIR), and X-ray photoelectron spectroscopies have been used to characterize the tested materials. The dose of SWNT materials used in this study is considerably higher than that proposed for most biomedical applications, but it was deemed necessary to administer such large doses to accurately assess the toxicological impact of the materials. In an acute toxicity test, SWNTs were administered orally at a dose level of 1000 mg/kg bodyweight (b.w.). Neither death nor growth or behavioral troubles were observed. After intraperitoneal administration, SWNTs, irrespective of their length or dose (50-1000 mg/kg b.w.), can coalesce inside the body to form fiberlike structures. When structure lengths exceeded 10 mum, they irremediably induced granuloma formation. Smaller aggregates did not induce granuloma formation, but they persisted inside cells for up to 5 months after administration. Short (<300 nm) well-individualized SWNTs can escape the reticuloendothelial system to be excreted through the kidneys and bile ducts. These findings suggest that if the potential of SWNTs for medical applications is to be realized, they should be engineered into discrete, individual "molecule-like" species.
We developed a multiplexed assay on a plasmonic-gold platform for measuring IgG and IgA antibodies and IgG avidity against both Zika virus (ZIKV) and dengue virus (DENV) infections. In contrast to IgM cross-reactivity, IgG and IgA antibodies against ZIKV nonstructural protein 1 (NS1) antigen were specific to ZIKV infection, and IgG avidity revealed recent ZIKV infection and past DENV-2 infection in patients in dengue-endemic regions. This assay could enable specific diagnosis of ZIKV infection over other flaviviral infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.