Interaction of the activating ligand H60 with NKG2D receptor constitutes a major stimulatory pathway for natural killer (NK) cells. The influence of inhibitory Ly49 receptors on NKG2D-mediated activation is not clearly understood. Here we show that the magnitude of NKG2D-mediated cytotoxicity is directly proportional to both the levels of H60 and the nature of major histocompatibility complex (MHC) class I molecules expressed on the target cells. The expression levels of H60 on the target cells determined the extent to which the inhibition by Ly49C/I receptors can be overridden. In contrast, even a higher expression of H60 molecule on the target cells failed to overcome the inhibition mediated by Ly49A/G receptors. Also, the level of interferon-gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF) generated by NK cells through anti-NKG2D monoclonal antibody (mAb)-mediated activation is significantly reduced by the presence of immobilized anti-Ly49A/G mAbs. Thus, NKG2D-mediated cytotoxicity and cytokine secretion results from the fine balance between activating and inhibitory receptors, thereby defining the NK cell-mediated immune responses.
Activating receptors such as NKG2D and Ly49D mediate a multitude of effector functions including cytotoxicity and cytokine generation in NK cells. However, specific signaling events that are responsible for the divergence of distinct effector functions have yet to be determined. In this study, we show that lack of caspase recruitment domain-containing protein Bcl10 significantly affected receptor-mediated cytokine and chemokine generation, but not cytotoxicity against tumor cells representing “missing-self” or “induced-self.” Lack of Bcl10 completely abrogated the generation of GM-CSF and chemokines and it significantly reduced the generation of IFN-γ (>75%) in NK cells. Commitment, development, and terminal maturation of NK cells were largely unaffected in the absence of Bcl10. Although IL-2-activated NK cells could mediate cytotoxicity to the full extent, the ability of the freshly isolated NK cells to mediate cytotoxicity was somewhat reduced. Therefore, we conclude that the Carma1-Bcl10-Malt1 signaling axis is critical for cytokine and chemokine generation, although it is dispensable for cytotoxic granule release depending on the activation state of NK cells. These results indicate that Bcl10 represents an exclusive “molecular switch” that links the upstream receptor-mediated signaling to cytokine and chemokine generations.
NK cells play a central role in mediating innate immune responses. Activation of NK cells results in cytotoxicity, cytokine, and chemokine secretions. In this study, we show that in mice with targeted deletion of phospholipase Cγ (PLCγ)2, one of the key signal transducers, there are profound effects on the development and terminal maturation of NK cells. Lack of PLCγ2 significantly impaired the ability of lineage-committed NK precursor cells to acquire subset-specific Ly49 receptors and thereby terminal maturation of NK cells. Overexpression of isozyme, PLCγ1, in PLCγ2-deficient NK cells resulted in the successful Ly49 acquisition and terminal maturation of the NK cells; however, it could only partially rescue NKG2D-mediated cytotoxicity with no cytokine production. Furthermore, PLCγ2-deficient NK cells failed to mediate antitumor cytotoxicity and inflammatory cytokine production, displaying a generalized hyporesponsiveness. Our results strongly demonstrate that PLCγ1 and PLCγ2 play nonredundant and obligatory roles in NK cell ontogeny and in its effector functions.
The CD8 memory T cell repertoire to the influenza A derived M158–66 epitope shows a restricted V genes and CDR3 sequences usage. The repertoire is highly polyclonal and the clonotype distribution has been described as consisting of two components, one showing a power law-like distribution and the other composed of a few clonotypes with a very high relative frequency. The question is whether the complex repertoire defined by its ability to flourish in a short term recall culture corresponded to functional cells. Here we show that there is a relation between expression of the degranulation marker CD107 and cytotoxicity or IFN-γ production in CD8 T cell lines and clones. We then examine recently degranulated CD8 cells from recall cultures from four middle aged HLA-A2 subjects and show that these functional cells are polyclonal. The clonotype distributions of the CD8 + CD107+ repertoires are complex in the same manner as previously reported. The clonotype composition of CD8 + CD107+ repertoires is also very similar to CD8 only repertoires, and to CD8 + HLA-A2-M158–66 pentamer positive repertoires. We postulate that multiple exposures during childhood to this conserved influenza A epitope has generated a complex functional repertoire in HLA-A2 individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.