The aim of this study was to determine the identification, incidence and distribution of botryosphaeriaceous species in New Zealand vineyards. A field study of 43 vineyards across six wine growing regions was conducted. A total of 336 isolates of botryosphaeriaceous species were isolated from 238 diseased grapevine samples. Morphological identification and phylogenetic analysis of the ribosomal RNA gene region, partial sequence of the translation elongation factor 1-alpha gene (EF1-α) and the β-tubulin gene identified nine botryosphaeriaceous species: N. parvum, N. luteum, N. australe, N. ribis, D. mutila, D. seriata, B. dothidea, Do. iberica and Do. sarmentorum. These species have been reported in other grape growing regions worldwide. Eighty eight percent of vineyards and 68% of symptomatic vines sampled were positive for botryosphaeriaceous species. Incidence and distribution of the botryosphaeriaceous species populations varied between the North and South Islands with N. parvum being the predominant species. The variability in incidence and distribution of the botryosphaeriaceous species may be influenced by climatic conditions and different sources of inoculum in the regions sampled. The results of this research clearly identified botryosphaeriaceous species as the target pathogens for development of management strategies for grapevine decline in New Zealand.
Fusarium circinatum is a harmful pathogenic fungus mostly attacking Pinus species and also Pseudotsuga menziesii , causing cankers in trees of all ages, damping-off in seedlings, and mortality in cuttings and mother plants for clonal production. This fungus is listed as a quarantine pest in several parts of the world and the trade of potentially contaminated pine material such as cuttings, seedlings or seeds is restricted in order to prevent its spread to disease-free areas. Inspection of plant material often relies on DNA testing and several conventional or real-time PCR based tests targeting F . circinatum are available in the literature. In this work, an international collaborative study joined 23 partners to assess the transferability and the performance of nine molecular protocols, using a wide panel of DNA from 71 representative strains of F . circinatum and related Fusarium species. Diagnostic sensitivity, specificity and accuracy of the nine protocols all reached values >80%, and the diagnostic specificity was the only parameter differing significantly between protocols. The rates of false positives and of false negatives were computed and only the false positive rates differed significantly, ranging from 3.0% to 17.3%. The difference between protocols for some of the performance values were mainly due to cross-reactions with DNA from non-target species, which were either not tested or documented in the original articles. Considering that participating laboratories were free to use their own reagents and equipment, this study demonstrated that the diagnostic protocols for F . circinatum were not easily transferable to end-users. More generally, our results suggest that the use of protocols using conventional or real-time PCR outside their initial development and validation conditions should require careful characterization of the performance data prior to use under modified conditions (i.e. reagents and equipment). Suggestions to improve the transfer are proposed.
Botryosphaeriaceous species are significant grapevine trunk pathogens worldwide, which can be difficult to identify to species level using conventional morphological methods. This study developed and optimized a quick, reliable molecular identification method that could facilitate investigations into the epidemiology of these diseases in vineyards. The multi-species primers, BOT100F and BOT472R, amplified a 371-372 bp portion of the rRNA gene region from the six botryosphaeriaceous species commonly found in New Zealand vineyards. In silico analysis indicated that they would amplify DNA from six of the 12 lineages of the Botryosphaeriaceae, including all of the main species pathogenic to grapevines. A detection sensitivity of 1 and 0AE1 pg DNA in standard and nested PCR, respectively, was achieved and this was calculated as equivalent to 2AE5 conidia. Validation of the primers for environmental samples showed that their specificity was not compromized by the presence of competing DNA templates extracted from wood and soil. Single stranded conformational polymorphism (SSCP) analysis of the amplicons could resolve Neofusicoccum australe, N. luteum, Diplodia mutila and D. seriata, but did not differentiate between N. parvum and N. ribis. The optimized PCR-SSCP was used to identify botryosphaeriaceous species present in rainwater traps collected over 1 year in a vineyard known to contain infected vines. It could detect multiple species in individual samples and demonstrated differences in the dispersal patterns of conidia from different species. Given the specificity and sensitivity of this method it could prove useful in epidemiology studies involving the numerous botryosphaeriaceous species that infect a wide range of host species.
Puccinia psidii (Myrtle rust) is an emerging pathogen that has a wide host range in the Myrtaceae family; it continues to show an increase in geographic range and is considered to be a significant threat to Myrtaceae plants worldwide. In this study, we describe the development and validation of three novel real-time polymerase reaction (qPCR) assays using ribosomal DNA and β-tubulin gene sequences to detect P. psidii. All qPCR assays were able to detect P. psidii DNA extracted from urediniospores and from infected plants, including asymptomatic leaf tissues. Depending on the gene target, qPCR was able to detect down to 0.011 pg of P. psidii DNA. The most optimum qPCR assay was shown to be highly specific, repeatable, and reproducible following testing using different qPCR reagents and real-time PCR platforms in different laboratories. In addition, a duplex qPCR assay was developed to allow coamplification of the cytochrome oxidase gene from host plants for use as an internal PCR control. The most optimum qPCR assay proved to be faster and more sensitive than the previously published nested PCR assay and will be particularly useful for high-throughput testing and to detect P. psidii at the early stages of infection, before the development of sporulating rust pustules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.