This paper presents a study of positioning system that provides advanced information services based on Wi-Fi and Bluetooth Low Energy (BLE) technologies. It uses Wi-Fi for rough positioning and BLE for fine positioning. It is designed for use in public transportation system stations and terminals where the conditions are “hostile” or unfavourable due to signal noise produced by the continuous movement of passengers and buses, data collection conducted in the constant presence thereof, multipath fading, non-line of sight (NLOS) conditions, the fact that part of the wireless communication infrastructure has already been deployed and positioned in a way that may not be optimal for positioning purposes, variable humidity conditions, etc. The ultimate goal is to provide a service that may be used to assist people with special needs. We present experimental results based on scene analysis; the main distance metric used was the Euclidean distance but the Mahalanobis distance was also used in one case. The algorithm employed to compare fingerprints was the weighted k-nearest neighbor one. For Wi-Fi, with only three visible access points, accuracy ranged from 3.94 to 4.82 m, and precision from 5.21 to 7.0 m 90% of the time. With respect to BLE, with a low beacon density (1 beacon per 45.7 m2), accuracy ranged from 1.47 to 2.15 m, and precision from 1.81 to 3.58 m 90% of the time. Taking into account the fact that this system is designed to work in real situations in a scenario with high environmental fluctuations, and comparing the results with others obtained in laboratory scenarios, our results are promising and demonstrate that the system would be able to position users with these reasonable values of accuracy and precision.
Vehicular ad hoc networks (VANETs) is considered a milestone in improving the safety and efficiency in transportation. Nevertheless, when information from the vehicular communications is combined with data from the cloud, it also introduces some privacy risks by making it easier to track the physical location of vehicles. For this reason, to guarantee the proper performance of a VANET it is essential to protect the service against malicious users aiming at disrupting the proper operation of the network. Current researches usually define a traditional identity-based authentication for nodes, which are loaded with individual credentials. However, the use of these credentials in VANETs without any security mechanism enables vehicle tracking and therefore, violate users' privacy, a risk that may be overcome by means of appropriate anonymity schemes. This comes at the cost, however, of on the one hand preventing VANET centralized authorities from identifying malicious users and revoking them from the network, or on the other hand to avoid complete anonymity of nodes in front of the CA thus to allow their revocation. In this paper, a novel revocation scheme that is able to track and revoke specific malicious users only after a number of complaints have been received while otherwise guaranteeing node's k-anonymity is described. The proper performance of these mechanisms has been widely evaluated with NS-2 simulator and an analytical model validated with scripts. The results show that presented work is a promising approach in order to increase privacy protection while allowing revocation with little extra costs.
Communication media have become the primary way of interaction thanks to the discovery and innovation of many new technologies. One of the most widely used communication systems today is video streaming, which is constantly evolving. Such communications are a good alternative to face-to-face meetings, and are therefore very useful for coping with many problems caused by distance. However, they suffer from different issues such as bandwidth limitation, network congestion, energy efficiency, cost, reliability and connectivity. Hence, the quality of service and the quality of experience are considered the two most important issues for this type of communication. This work presents a complete comparative study of two of the most used protocols of video streaming, Real Time Streaming Protocol (RTSP) and the Web Real-Time Communication (WebRTC). In addition, this paper proposes two new mobile applications that implement those protocols in Android whose objective is to know how they are influenced by the aspects that most affect the streaming quality of service, which are the connection establishment time and the stream reception time. The new video streaming applications are also compared with the most popular video streaming applications for Android, and the experimental results of the analysis show that the developed WebRTC implementation improves the performance of the most popular video streaming applications with respect to the stream packet delay.
A vehicular ad hoc network (VANET) is a wireless network that provides communications between nearby vehicles. Among the different types of information that can be made available to vehicles through VANETs, road traffic information is the most important one. This work is part of an experimental development of a wireless communication platform oriented to applications that allow improving road efficiency and safety, managing and monitoring road traffic, encouraging cooperative driving, and offering pedestrian services and other added-value uses. The proposed system consists of smartphones, sensors, and Wi-Fi hotspots 2.0, as well as complementary functionalities including access to network infrastructure via 3G, GPRS, and 4G. The developed wireless network prototype allows taking advantage of the potential benefits of VANETs. At the same time, the use of smartphones does not require large money investments either in public or restricted areas. The first implementations with smartphones have been useful to test the behaviour of the proposal in a real environment. We have also implemented a large-scale simulation by using NS-2 simulator. From the obtained data, we have estimated the minimum requirements necessary for the correct working of a VANET and the problems that can happen in case of possible attacks or communication overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.