BackgroundMiltefosine has been used successfully to treat visceral leishmaniasis (VL) in India, but it was unsuccessful for VL in a clinical trial in Brazil.MethodsTo identify molecular markers that predict VL treatment failure whole genome sequencing of 26 L. infantum isolates, from cured and relapsed patients allowed a GWAS analysis of SNPs, gene and chromosome copy number variations.FindingsA strong association was identified (p = 0·0005) between the presence of a genetically stable L. infantumMiltefosine Sensitivity Locus (MSL), and a positive response to miltefosine treatment. The risk of treatment failure increased 9·4-fold (95% CI 2·11–53·54) when an isolate did not have the MSL. The complete absence of the MSL predicted miltefosine failure with 0·92 (95% CI 0·65–0·996) sensitivity and 0·78 (95% CI 0·52–0·92) specificity. A genotyping survey of L. infantum (n = 157) showed that the frequency of MSL varies in a cline from 95% in North East Brazil to <5% in the South East. The MSL was found in the genomes of all L. infantum and L. donovani sequenced isolates from the Old World (n = 671), where miltefosine can have a cure rate higher than 93%.InterpretationKnowledge on the presence or absence of the MSL in L. infantum will allow stratification of patients prior to treatment, helping to establish better therapeutic strategies for VL treatment.FundCNPq, FAPES, GCRF MRC and Wellcome Trust.
SummaryThe Rad9‐Rad1‐Hus1 (9‐1‐1) complex is a key component in the coordination of DNA damage sensing, cell cycle progression and DNA repair pathways in eukaryotic cells. This PCNA‐related trimer is loaded onto RPA‐coated single stranded DNA and interacts with ATR kinase to mediate effective checkpoint signaling to halt the cell cycle and to promote DNA repair. Beyond these core activities, mounting evidence suggests that a broader range of functions can be provided by 9‐1‐1 structural diversification. The protozoan parasite Leishmania is an early‐branching eukaryote with a remarkably plastic genome, which hints at peculiar genome maintenance mechanisms. Here, we investigated the existence of homologs of the 9‐1‐1 complex subunits in L. major and found that LmRad9 and LmRad1 associate with chromatin in response to replication stress and form a complex in vivo with LmHus1. Similar to LmHus1, LmRad9 participates in telomere homeostasis and in the response to both replication stress and double strand breaks. However, LmRad9 and LmHus1‐deficient cells present markedly opposite phenotypes, which suggest their functional compartmentalization. We show that some of the cellular pool of LmRad9 forms an alternative complex and that some of LmHus1 exists as a monomer. We propose that the diverse assembly of the Leishmania 9‐1‐1 subunits mediates functional compartmentalization, which has a direct impact on the response to genotoxic stress.
DNA replication is needed to duplicate a cell's genome in S-phase and segregate it during cell division. Previous work in Leishmania detected DNA replication initiation at just a single region in each chromosome, an organisation predicted to be insufficient for complete genome duplication within S-phase. Here, we show that acetylated histone H3 (AcH3), base J and a kinetochore factor colocalise in each chromosome at only a single locus, which corresponds with previously mapped DNA replication initiation regions and is demarcated by localised G/T skew and G4 patterns. In addition, we describe previously undetected subtelomeric DNA replication in G2/M and G1 phase-enriched cells. Finally, we show that subtelomeric DNA replication, unlike chromosome-internal DNA replication, is sensitive to hydroxyurea and dependent on 9-1-1 activity. These findings indicate that Leishmania's genome duplication programme employs subtelomeric DNA replication initiation, possibly extending beyond S-phase, to support predominantly chromosome-internal DNA replication initiation within S-phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.