This work presents visualization and measurement of the evaporation resistance for operating flat-plate heat pipes with sintered multi-layer copper-mesh wick. A glass plate was adopted as the top wall for visualization. The multi-layer copper-mesh wick was sintered on the copper bottom plate. With different combinations of 100 and 200 mesh screens, the wick thickness ranged from 0.26 mm to 0.8 mm. Uniform heating was applied to the base plate near one end with a heated surface of 1.1×1.1 cm2. At the other end was a cooling water jacket. At various water charges, the evaporation resistances were measured with evaporation behavior visualized for heat fluxes of 16–160 W/cm2. Quiescent surface evaporation without nucleate boiling was observed for all test conditions. With heat flux increased, the water film receded and the evaporation resistance reduced. The minimum evaporation resistances were found when a thin water film was sustained in the bottom mesh layer. With heat flux further increased, partial dry-out appeared with dry patches in the bottom mesh holes, first at the upstream end of the heated area and then expanded across the evaporator. The evaporation resistance rose in response to the appearance and expansion of partial dry-out. When the fine 200 mesh screen was used as the bottom layer, its thinner thickness and stronger capillarity led to smaller minimum evaporation resistances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.