Resistive switchable memory devices were fabricated using self-assembled composite thin films of asymmetric poly(styrene-block-4-vinylpyridine) (PS-b-P4VP) block copolymers (BCP) and fullerene derivatives (PCBM). L1 (with a longer PS block) was comprised of discrete vertical P4VP nanocylinders embedded within the PS matrix whereas L2 (with a longer P4VP block) revealed a reverse morphology with a horizontal orientation. They were used to control the spatial location or distribution of the PCBM and the resultant memory characteristics. The devices with ITO/BCP:PCBM/ Al configurations exhibited variable multi-electronic characteristics, changing from insulating to bistable memory switching and highly conducting, as the PCBM content increased. The L1:PCBM memory device showed non-volatile write-once-read-many-times (WORM) memory behavior but the L2:PCBM device exhibited a volatile nature of static random access memory (SRAM). Both L1 and L2: PCBM composite devices revealed the improved switching performance upon solvent annealing procedures of the composite thin film. Our results suggested that the controlled morphology of the BCP/PCBM composite could create nanoscale charge-storage elements for a high density memory device with a reduced bit cell size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.