In this study, through simulation and experimental verification, we proposed a novel hydrocyclone in which a tubular ceramic membrane passed through the overflow outlet to the underflow outlet. The centers of overflow and underflow outlets were tubular membranes equipped with an exit of outside-in filtration, and the overflow the underflow outlets were shaped into annular (donut shape) exits. Thus, this novel hydrocyclone has three outlets, namely the overflow dilute liquid, the underflow concentrated liquid, and clear filtrate. This system enabled higher dilution of hydrocyclone overflow concentration than that in the traditional system. Furthermore, underflow was more concentrated, and we obtained a clear filtrate. Therefore, this device can simultaneously perform classification and filtration, which is valuable for special liquid recycling. For instance, in wafer cutting fluid recovery in solar energy processes, the fluid with more silicon can function as the overflow, the fluid with more silicon carbide can function as the underflow, and the polyethylene glycol (PEG) organic solvent can function as the clear filtrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.