A novel diffused photon-pair density wave (DPPDW) composed of correlated polarized photon pairs at different temporal frequencies and orthogonal linearly polarized states is proposed. A theory of DPPDWs is developed. A DPPDW selected by coherence gating and polarization gating that satisfies the diffusion equation has been verified experimentally. The sensitivity of amplitude and phase detection of the heterodyne signal has been improved by the properties of synchronized detection and common-path propagation of polarized pair photons in a multiple-scattering medium. Both reduced scattering coefficient micro2s' and absorption coefficient micro2alpha of the scattering medium in terms of the measured phase and amplitude of the heterodyne signal have been obtained. The detection sensitivity of micro2s' and micro2alpha and the properties of a DPPDW in a multiple-scattering medium are discussed and analyzed.
As a continuation of the previously developed theory of a diffuse photon-pairs density wave (DPPDW) [Appl. Opt.44, 1416-1425 (2005)APOPAI0003-693510.1364/AO.44.001416], this research experimentally studies and verifies the DPPDW theory in a heterogeneous multiple-scattering medium. The DPPDW is generated by collecting the scattered linear polarized photon pairs (LPPPs) in the multiple-scattering medium. Theoretically, the common-path propagation of LPPPs not only provides common phase noise rejection mode but also performs coherence technique via heterodyne detection. In addition, the polarization gating and spatial coherence gating of LPPPs would suppress the severe scattered photon in the multiple-scattering medium. In the experiment, the amplitude and phase wavefronts of DPPDWs, which are distorted by a small object embedded in a homogeneous multiple-scattering medium, are measured in one dimension or two dimensions by scanning the source detector pair. The measured distortion of DPPDW wavefronts are detected precisely and are consistent with the theoretical calculation of DPPDW. It implies an improvement on the detection sensitivity of a small object compared with the conventional diffuse photon density wave (DPDW).
This research proposed a dual-frequency heterodyne ellipsometer (DHE) in which a dual-frequency collinearly polarized laser beam with equal amplitude and zero phase difference between p- and s-polarizations is setup. It is based on the polarizer-sample-analyzer, PSA configuration of the conventional ellipsometer. DHE enables to characterize a generalized elliptical phase retarder by treating it as the combination of a linear phase retarder and a polarization rotator. The method for measuring elliptical birefringence of an elliptical phase retarder based on the equivalence theorem of an unitary optical system was derived and the experimental verification by use of DHE was demonstrated too. The experimental results show the capability of DHE on characterization of a generalized phase retardation plate accurately.
To characterize the linear birefringence of a multiple-order wave plate (MWP), an oblique incidence is one of the methods available. Multiple reflections in the MWP are produced, and oscillations in the phase retardation measurement versus the oblique incident angle are then measured. Therefore, an antireflection coated MWP is required to avoid oscillation of the phase retardation measurement. In this study, we set up a phase-sensitive heterodyne ellipsometer to measure the phase retardations of an uncoated MWP versus the oblique incident angle, which was scanned in the x-z plane and y-z plane independently. Thus, the effect on multiple reflections by the MWP is reduced by means of subtracting the two measured phase retardations from each other. As a result, a highly sensitive and accurate measurement of retardation parameters (RPs), which includes the refractive indices of the extraordinary ray n(e) and ordinary ray n(o), is obtained by this method. On measurement, a sensitivity (n(e),n(o)) of 10(-6) was achieved by this experiment setup. At the same time, the spatial shifting of the P and S waves emerging from the MWP introduced a deviation between experimental results and the theoretical calculation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.