The data‐independent acquisition mass spectrometry (DIA‐MS) has rapidly evolved as a powerful alternative for highly reproducible proteome profiling with a unique strength of generating permanent digital maps for retrospective analysis of biological systems. Recent advancements in data analysis software tools for the complex DIA‐MS/MS spectra coupled to fast MS scanning speed and high mass accuracy have greatly expanded the sensitivity and coverage of DIA‐based proteomics profiling. Here, we review the evolution of the DIA‐MS techniques, from earlier proof‐of‐principle of parallel fragmentation of all‐ions or ions in selected m/z range, the sequential window acquisition of all theoretical mass spectra (SWATH‐MS) to latest innovations, recent development in computation algorithms for data informatics, and auxiliary tools and advanced instrumentation to enhance the performance of DIA‐MS. We further summarize recent applications of DIA‐MS and experimentally‐derived as well as in silico spectra library resources for large‐scale profiling to facilitate biomarker discovery and drug development in human diseases with emphasis on the proteomic profiling coverage. Toward next‐generation DIA‐MS for clinical proteomics, we outline the challenges in processing multi‐dimensional DIA data set and large‐scale clinical proteomics, and continuing need in higher profiling coverage and sensitivity.
Despite advancements of data-independent acquisition mass spectrometry (DIA-MS) to provide comprehensive and reproducible proteome profiling, its utility in very low-input samples is limited. Due to different proteome complexities and corresponding peptide ion abundances, the conventional LC−MS/MS acquisition and widely used large-scale DIA libraries may not be suitable for the micro-nanogram samples. In this study, we report a sample size-comparable library-based DIA approach to enhance the proteome coverage of low-input nanoscale samples (i.e., nanogram cells, ∼5−50 cells). By constructing sample sizecomparable libraries, 2380 and 3586 protein groups were identified from as low as 0.75 (∼5 cells) and 1.5 ng (∼10 cells), respectively, highlighting one of the highest proteome coverage with good reproducibility (86%−99% in triplicate results). For the 0.75 ng sample (∼5 cells), significantly superior identification (2380 proteins) was achieved by small-size library-based DIA, compared to 1908, 1749, and 107 proteins identified from medium-size and large-size libraries and a lung cancer resource spectral library, respectively. A similar trend was observed using a different instrument and data analysis pipeline, indicating the generalized conclusion of the approach. Furthermore, the small-size library uniquely identified 518 (22%) proteins in the low-abundant region and spans over a 5-order dynamic range. Spectral similarity analysis revealed that the fragmentation ion pattern in the DIA-MS/MS spectra of the dataset and spectral library play crucial roles for mapping low abundant proteins. With these spectral libraries made freely available, the optimized library-based DIA strategy and DIA digital map will advance quantitative proteomics applications for mass-limited samples.
Plants and pathogens are entangled in a continual arms race. Plants have evolved dynamic defence and immune mechanisms to resist infection and enhance immunity for second wave attacks from the same or different types of pathogenic species. In addition to evolutionarily and physiological changes, plant-pathogen interaction is also highly dynamic at the molecular level. Recently, an emerging quantitative mass spectrometry-based proteomics approach named data-independent acquisition (DIA), has been developed for the analysis of the proteome in a high-throughput fashion. In this study, the DIA approach was applied to quantitatively trace the change in the plant proteome from the early to the later stage of pathogenesis progression. This study revealed that at the early stage of the pathogenesis response, proteins directly related to the chaperon were regulated for the defence proteins. At the later stage, not only the defence proteins but also a set of the pathogen-associated molecular pattern-triggered immunity (PTI) and effector triggered immunity (ETI)-related proteins were highly induced. Our findings show the dynamics of the plant regulation of pathogenesis at the protein level and demonstrate the potential of using the DIA approach for tracing the dynamics of the plant proteome during pathogenesis responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.