The intestinal mucosa serves as both a conduit for uptake of food-derived nutrients and microbiome-derived metabolites and as a barrier that prevents tissue invasion by microbes and tempers inflammatory responses to the myriad contents of the lumen. How the intestine coordinates physiological and immune responses to food consumption to optimize nutrient uptake while maintaining barrier functions remains unclear. Here we show in mice how a gut neuronal signal triggered by food intake is integrated with intestinal antimicrobial and metabolic responses controlled by type 3 innate lymphoid cells (ILC3) 1 – 3 . Food consumption rapidly activates a population of enteric neurons that express vasoactive intestinal peptide (VIP) 4 . Projections of VIP-producing neurons (VIPergic neurons) in the lamina propria are in close proximity to clusters of ILC3 that selectively express VIP receptor type 2 (VIPR2; also known as VPAC2). Production of interleukin (IL)-22 by ILC3, which is up-regulated by commensal microbes such as segmented filamentous bacteria (SFB) 5 – 7 , is inhibited upon engagement of VIPR2. As a consequence, there is a reduction in epithelial cell-derived antimicrobial peptide, but enhanced expression of lipid-binding proteins and transporters 8 . During food consumption, activation of VIPergic neurons thus enhances growth of epithelial-associated SFB and increases lipid absorption. Our results reveal a feeding- and circadian-regulated dynamic intestinal neuro-immune circuit that promotes a trade-off between IL-22-mediated innate immune protection and efficiency of nutrient absorption. Modulation of this pathway may hence be effective for enhancing resistance to enteropathogen 2 , 3 , 9 and for treatment of metabolic diseases.
Allelism in the glutathione S-transferase, GSTM3 gene has been identified using PCR with specific primers to exon 6/exon 7. Sequencing showed the mutant GSTM3*B allele to have a three-base deletion in intron 6 with a frequency of 0.158. The mutation generates a recognition sequence, 5'-AAGATA-3', for the negative transcription factor YY1. GSTM3*B was significantly associated with GSTM1*A.
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by joint destruction and severe morbidity. Methotrexate (MTX) is the standard first-line therapy of RA. However, about 40% of RA patients are unresponsive to MTX treatment. Regulatory T cells (Tregs, CD4 + CD25 + FoxP3 + ) are thought to play an important role in attenuating RA. To investigate the role of Tregs in MTX resistance, we recruited 122 RA patients (53 responsive, R-MTX; 69 unresponsive, UR-MTX) and 33 healthy controls. Three months after MTX treatment, R-MTX but not UR-MTX showed higher frequency of peripheral blood CD39 + CD4 + CD25 + FoxP3 + Tregs than the healthy controls. Tregs produce adenosine (ADO) through ATP degradation by sequential actions of two cell surface ectonucleotidases: CD39 and CD73. Tregs from UR-MTX expressed a lower density of CD39, produced less ADO, and had reduced suppressive activity than Tregs from R-MTX. In a prospective study, before MTX treatment, UR-MTX expressed a lower density of CD39 on Tregs than those of R-MTX or control (P < 0.01). In a murine model of arthritis, CD39 blockade reversed the antiarthritic effects of MTX treatment. Our results demonstrate that MTX unresponsiveness in RA is associated with low expression of CD39 on Tregs and the decreased suppressive activity of these cells through reduced ADO production. Our findings thus provide hitherto unrecognized mechanism of immune regulation in RA and on mode of action of MTX. Furthermore, our data suggest that low expression of CD39 on Tregs could be a noninvasive biomarker for identifying MTX-resistant RA patients.methotrexate | rheumatoid arthritis | adenosine | biomarker | ectonucleotidases
The activation of the satellite glial cells (SGCs) surrounding the dorsal root ganglion (DRG) neurons appears to play a role in pathological pain. We tested the hypothesis that fractalkine, which is constitutively expressed by primary nociceptive neurons, is the link between peripheral inflammation and the activation of SGCs and is thus responsible for the genesis of the inflammatory pain. The injection of carrageenin into the rat hind paw induced a decrease in the mechanical nociceptive threshold (hypernociception), which was associated with an increase in mRNA and GFAP protein expression in the DRG. Both events were inhibited by antifractalkine antibody administered directly into the DRG (L5) [intraganglionar (i.gl.)]. The administration of fractalkine into the DRG (L5) produced mechanical hypernociception in a dose-, time-, and CX3C receptor-1 (CX3CR1)-dependent manner. Fractalkine's hypernociceptive effect appears to be indirect, as it was reduced by local treatment with anti-TNF-α antibody, IL-1-receptor antagonist, or indomethacin. Accordingly, the in vitro incubation of isolated and cultured SGC with fractalkine induced the production/ release of TNF-α, IL-1β, and prostaglandin E 2 . Finally, treatment with i.gl. fluorocitrate blocked fractalkine (i.gl.)-and carrageenin (paw)-induced hypernociception. Overall, these results suggest that, during peripheral inflammation, fractalkine is released in the DRG and contributes to the genesis of inflammatory hypernociception. Fractalkine's effect appears to be dependent on the activation of the SGCs, leading to the production of TNFα, IL-1β, and prostanoids, which are likely responsible for the maintenance of inflammatory pain. Thus, these results indicate that the inhibition of fractalkine/ CX3CR1 signaling in SGCs may serve as a target to control inflammatory pain.cytokines | hyperalgesia | primary sensitization | nociception
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.