The anti-oxidant effects of epigallocatechin gallate (EGCG) and alpha lipoic acid (ALA) have been demonstrated in previous studies. The kidney protection effects of EGCG and ALA in patients with kidney injury are still under investigation. The purpose of this study is to investigate the anti-inflammatory and anti-oxidant effects of EGCG and ALA on high glucose-induced human kidney cell damage. EGCG inhibited high glucose(HG)-induced TNF-α and IL-6 production in human embryonic kidney (HEK) cells. Both EGCG and ALA decreased HG-induced receptor of advanced glycation end products (RAGE) mRNA and protein expressions in HEK cells. EGCG and ALA also recovered HG-inhibited superoxide dismutase production and decreased ROS expressions in HEK cells. The synergism of EGCG and ALA was also studied. The effect of EGCG combined with ALA is greater than the effect of EGCG alone in all anti-inflammation and anti-oxidant experiments. Our studies provide a potential therapeutic application of EGCG and ALA in preventing progression of diabetic nephropathy.
The anti-oxidant effects of epigallocatechin gallate (EGCG) and alpha lipoic acid (ALA) have been demonstrated in previous studies. The kidney protection effects of EGCG and ALA in patients with kidney injury are still under investigation. The purpose of this study is to investigate the anti-infl ammatory and anti-oxidant effects of EGCG and ALA on high glucose-induced human kidney cell damage. EGCG inhibited high glucose(HG)-induced TNF-α and IL-6 production in human embryonic kidney (HEK) cells. Both EGCG and ALA decreased HG-induced receptor of advanced glycation end products (RAGE) mRNA and protein expressions in HEK cells. EGCG and ALA also recovered HG-inhibited superoxide dismutase production and decreased ROS expressions in HEK cells. The synergism of EGCG and ALA was also studied. The effect of EGCG combined with ALA is greater than the effect of EGCG alone in all anti-infl ammation and anti-oxidant experiments. Our studies provide a potential therapeutic application of EGCG and ALA in preventing progression of diabetic nephropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.