La simulación tradicional In Sillico (simulación computacional) no permite recrear ambientes realistas. Herramientas como hardware-in-the-loop (HIL) permiten simular en tiempo real la respuesta de un sistema ante diferentes perturbaciones y situaciones en la regulación de glucosa e insulina en las que podría encontrarse un paciente en Unidad de Cuidados Intensivos (UCI), tales como hiperglucemias o hipoglucemias. En esta investigación, se pretende desarrollar una metodología para la implementación de la técnica de simulación HIL para desarrollar una plataforma de prueba de sensores virtuales para el sistema glucosa-insulina de pacientes en UCI usando la metodología HIL y estimadores de estado, para lo cual se estableció una comunicación que permitió someter el sistema a perturbaciones en tiempo real, además de desarrollar una interfaz que permite la manipulación de las principales características y parámetros tanto del modelo como de los sensores virtuales.
Pollution in urban areas has been one of the most relevant problems of the last decade since it represents a threat to public health. Specifically, particulate matter (PM2.5) is a pollutant that causes serious health complications, such as heart and lung diseases. Centers for monitoring contaminants and climatic variables have been established to adopt measures to control the consequences of high levels of air pollution. However, these monitoring centers sometimes make decisions when pollution levels are already harmful to health, which may be related to sensor miscalibration and failures. This study presents a PM2.5 prediction system based on a state-space model—developed with real data from 2019—plus a Kalman filter to improve the prediction. The system was subsequently validated using real data captured in 2018 in Valle de Aburrá. Therefore, this is an important first step towards a more robust PM diagnosis and prediction system in the presence of false and mismatched data in the measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.