Nowadays, the global energy crisis has encouraged the use of alternative sources like the energy available in the water currents of seas and rivers. The vertical axis water turbine (VAWT) is an interesting option to harness this energy due to its advantages of facile installation, maintenance and operation. However, it is known that its efficiency is lower than that of other types of turbines due to the unsteady effects present in its flow physics. This work aims to analyse through Computational Fluid Dynamics (CFD) the turbulent flow dynamics around a small scale VAWT confined in a hydrodynamic tunnel. The simulations were developed using the Unsteady Reynolds Averaged Navier Stokes (URANS), Detached Eddy Simulation (DES) and Delayed Detached Eddy Simulation (DDES) turbulence models, all of them based on k-ω Shear Stress Transport (SST). The results and analysis of the simulations are presented, illustrating the influence of the tip speed ratio. The numerical results of the URANS model show a similar behaviour with respect to the experimental power curve of the turbine using a lower number of elements than those used in the DES and DDES models. Finally, with the help of both the Q-criterion and field contours it is observed that the refinements made in the mesh adaptation process for the DES and DDES models improve the identification of the scales of the vorticity structures and the flow phenomena present on the near and far wake of the turbine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.