Computational techniques for analyzing biological images offer a great potential to enhance our knowledge of the biological processes underlying disorders of the nervous system. Friedreich’s Ataxia (FRDA) is a rare progressive neurodegenerative inherited disorder caused by the low expression of frataxin, which is a small mitochondrial protein. In FRDA cells, the lack of frataxin promotes primarily mitochondrial dysfunction, an alteration of calcium (Ca2+) homeostasis and the destabilization of the actin cytoskeleton in the neurites and growth cones of sensory neurons. In this paper, a computational multilinear algebra approach was used to analyze the dynamics of the growth cone and its function in control and FRDA neurons. Computational approach, which includes principal component analysis and a multilinear algebra method, is used to quantify the dynamics of the growth cone (GC) morphology of sensory neurons from the dorsal root ganglia (DRG) of the YG8sR humanized murine model for FRDA. It was confirmed that the dynamics and patterns of turning were aberrant in the FRDA growth cones. In addition, our data suggest that other cellular processes dependent on functional GCs such as axonal regeneration might also be affected. Semiautomated computational approaches are presented to quantify differences in GC behaviors in neurodegenerative disease. In summary, the deficiency of frataxin has an adverse effect on the formation and, most importantly, the growth cones’ function in adult DRG neurons. As a result, frataxin deficient DRG neurons might lose the intrinsic capability to grow and regenerate axons properly due to the dysfunctional GCs they build.
One of the major difficulties in medical image segmentation is the high variability of these images, which is caused by their origin (multi-centre), the acquisition protocols (multi-parametric), as well as the variability of human anatomy, the severity of the illness, the effect of age and gender, among others. The problem addressed in this work is the automatic semantic segmentation of lumbar spine Magnetic Resonance images using convolutional neural networks. The purpose is to assign a classes label to each pixel of an image. Classes were defined by radiologists and correspond to different structural elements like vertebrae, intervertebral discs, nerves, blood vessels, and other tissues. The proposed network topologies are variants of the U-Net architecture. Several complementary blocks were used to define the variants: Three types of convolutional blocks, spatial attention models, deep supervision and multilevel feature extractor. This document describes the topologies and analyses the results of the neural network designs that obtained the most accurate segmentations. Several of the proposed designs outperform the standard U-Net used as baseline, especially when used in ensembles where the output of multiple neural networks is combined according to different strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.