Most of the charcoal in the world comes from small and medium-sized producers, using rudimentary carbonization kilns that require significant time or energy during the heating and cooling stages of the process. Despite advances in improving the performance, the influence of materials used in the sidewalls of these kilns has been scarcely studied. Therefore, based on numerical simulations, the present study analyses the thermal performance of cylindrical sidewalls composed of combinations of metallic materials, ceramic materials, and insulating blankets grouped in three configurations: configuration I (sidewall with just one material), configuration II (sidewall with two materials assembled in series), and configuration III (pivoting sidewall). Results were encouraging, especially when comparing kiln configuration I with the novel configuration III. Simulations suggested that the proposed configuration III could reduce the heating time by 62%, the cooling time by 91%, the heat supplied to sidewalls by 80%, and the heat loss to the external environment by 99.7%. The save of wood charged into the charcoal kiln grew up to 7.3 times, varying the thickness of the inner layer of the sidewall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.