Endophytic fungi are those that present part of their life cycle in healthy tissues of different plant hosts in symbiosis without causing harm. At the same time, fungus-plant symbiosis makes it possible for microorganisms to synthesize their own bioactive secondary metabolites while in stationary stage. Such microorganism-derived secondary metabolites contribute. Therefore, this work aimed to. To accomplish this, the endophytic fungus Trichoderma asperellum was isolated from Bertholletia excelsa (Brazil nut) almonds. The fungus was cultivated and extracted with ethyl acetate, obtaining AM07Ac. Then, using HPTLC (High-performance thin-layer chromatography) and Nuclear Magnetic Resonance (1H NMR), β-amyrin, kaempferol, and brucine were identified as major compounds. Further in vivo assays in Zebrafish demonstrated the activity of AM07Ac on melanogenesis by producing a concentration-response inhibitory effect, which, through an in silico study, proved to be related to the noted major compounds known to inhibit tyrosinase activity. The inhibition of tyrosinase prevents melanin accumulation in skin. Therefore, these results imply the importance of investigating microorganisms and their pharmacological activities, in particular the endophytic fungus Trichoderma asperellum as a generator of active metabolites for melanogenesis modulation.
Endophytic fungi are those that present part of their life cycle in healthy tissues of different plant hosts in symbiosis without causing harm. At the same time, fungus-plant symbiosis makes it possible for microorganisms to synthesize their own bioactive secondary metabolites while in the stationary stage. To accomplish this, the endophytic fungus Trichoderma asperellum was isolated from Bertholletia excelsa (Brazil nut) almonds. The fungus was cultivated and extracted with ethyl acetate, obtaining AM07Ac. Then, using HPTLC (High-performance thin-layer chromatography) and nuclear magnetic resonance (1H NMR), β-amyrin, kaempferol, and brucine were identified as major compounds. Further in vivo assays in zebrafish demonstrated the activity of AM07Ac on melanogenesis by producing a concentration–response inhibitory effect, which, through an in silico study, proved to be related to the noted major compounds known to inhibit tyrosinase activity. The inhibition of tyrosinase prevents melanin accumulation in skin. Therefore, these results imply the importance of investigating microorganisms and their pharmacological activities, in particular the endophytic fungus Trichoderma asperellum as a generator of active metabolites for melanogenesis modulation.
This work showed the crude extract of the endophytic fungus Aspergillus sp, isolated from the almonds of Bertholletia excelsa Humn & Bonlp collected in the Brazilian Amazon, oviposition deterrent, and larvicidal activity of against Aedes aegypti. In the oviposition deterrence test was observed that females able to lay eggs preferred the control oviposition sites (46.6%), suggesting the extract also could repel the oviposition. Futhermore, the extract showed larvicidal activity with LC50 26.86 µg/mL at 24 hours and 18.75 µg/mL at 48 hours. Molecular docking studies were carried out to elucidate the mechanism of action of the compounds identified against the enzyme acetylcholinesterase. The compound Aspergillol B was a potent larvicide with potential for inhibition for the acetylcholinesterase enzyme (-7.74 Kcal/mol). These unprecedented results reported indicate that the secondary metabolites obtained from crude extract of Aspergillus sp. present useful biological potential against vectors of public health importance and antibiotic-resistant bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.