The Yen−Mullins model, also known as the modified Yen model, specifies the predominant molecular and colloidal structure of asphaltenes in crude oils and laboratory solvents and consists of the following: The most probable asphaltene molecular weight is ∼750 g/mol, with the island molecular architecture dominant. At sufficient concentration, asphaltene molecules form nanoaggregates with an aggregation number less than 10. At higher concentrations, nanoaggregates form clusters again with small aggregation numbers. The Yen−Mullins model is consistent with numerous molecular and colloidal studies employing a broad array of methodologies. Moreover, the Yen−Mullins model provides a foundation for the development of the first asphaltene equation of state for predicting asphaltene gradients in oil reservoirs, the Flory−Huggins− Zuo equation of state (FHZ EoS). In turn, the FHZ EoS has proven applicability in oil reservoirs containing condensates, black oils, and heavy oils. While the development of the Yen−Mullins model was founded on a very large number of studies, it nevertheless remains essential to validate consistency of this model with important new data streams in asphaltene science. In this paper, we review recent advances in asphaltene science that address all critical aspects of the Yen−Mullins model, especially molecular architecture and characteristics of asphaltene nanoaggregates and clusters. Important new studies are shown to be consistent with the Yen−Mullins model. Wide ranging studies with direct interrogation of the Yen−Mullins model include detailed molecular decomposition analyses, optical measurements coupled with molecular orbital calculations, nuclear magnetic resonance (NMR) spectroscopy, centrifugation, direct-current (DC) conductivity, interfacial studies, small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS), as well as oilfield studies. In all cases, the Yen−Mullins model is proven to be at least consistent if not valid. In addition, several studies previously viewed as potentially inconsistent with the Yen−Mullins model are now largely resolved. Moreover, oilfield studies using the Yen−Mullins model in the FHZ EoS are greatly improving the understanding of many reservoir concerns, such as reservoir connectivity, heavy oil gradients, tar mat formation, and disequilibrium. The simple yet powerful advances codified in the Yen−Mullins model especially with the FHZ EoS provide a framework for future studies in asphaltene science, petroleum science, and reservoir studies.
One prevention and therapeutic strategy for diseases associated with peptide or protein fibrillation is to inhibit or delay the fibrillation process. Carbon dots (C–Dots) have recently emerged as benign nanoparticles to replace toxic quantum dots and have attracted great attention because of their unique optical properties and potential applications in biological systems. However, the effect of C-Dots on peptide or protein fibrillation has not been explored. In this in vitro study, human insulin was selected as a model to investigate the effect of C-Dots on insulin fibrillation. Water-soluble fluorescent C-Dots with sizes less than 6 nm were prepared from carbon powder and characterized by UV–vis spectroscopy, fluorescence, Fourier transform infrared spectrophotometry, X-ray photoelectron spectrometry, transmission electron microscopy, and atomic force microscopy. These C-Dots were able to efficiently inhibit insulin fibrillation in a concentration-dependent manner. The inhibiting effect of C-Dots was even observed at 0.2 μg/mL. Importantly, 40 μg/mL of C-Dots prevent 0.2 mg/mL of human insulin from fibrillation for 5 days under 65 °C, whereas insulin denatures in 3 h under the same conditions without C-Dots. The inhibiting effect is likely due to the interaction between C-Dots and insulin species before elongation. Cytotoxicity study shows that these C-Dots have very low cytotoxicity. Therefore, these C-Dots have the potential to inhibit insulin fibrillation in biological systems and in the pharmaceutical industry for the processing and formulation of insulin.
Monolayers of several peptide lipids at air-water and air-solid interfaces were prepared using Langmuir and Langmuir-Blodgett (LB) film techniques, and tested as fluorescent sensors for copper ions in aqueous phase. In one method, both the ionophore and the fluorophore were in the same molecule (lipid A), so intramolecular interaction was responsible for the fluorescence quenching of monolayers of this lipid. In the other method, ionophore and fluorophore were located on two different molecules (lipids B and C) so the intramolecular coupling does not exist; instead the fluorescence quenching was realized by a through-space interaction mechanism. Several experimental techniques, including pi-A isotherm, epifluorescence microscopy, and absorption and emission spectroscopies were used to study the different characteristics of copper ion effect on the properties of the lipid monolayers. Additionally, the fluorescence quenching properties of the Langmuir monolayers were found to be transferred to the one-layer LB films. On LB films, the fluorescence response presented a clear selectivity for copper ions in comparison with several other transition metal ions. Further, an excellent reversibility was observed: the fluorescence was switched OFF by immersing the solid substrate in copper ion solution and ON by washing with HCl solution. The intermolecular approach used here seems to be a very flexible and general method to design surface-oriented fluorescent sensors to meet different analytic purposes.
Biosensing methods and devices using graphene oxide (GO) have recently been explored for detection and quantification of specific biomolecules from body fluid samples, such as saliva, milk, urine, and serum. For a practical diagnostics application, any sensing system must show an absence of nonselective detection of abundant proteins in the fluid matrix. Because lysozyme is an abundant protein in these body fluids (e.g., around 21.4 and 7 μg/mL of lysozyme is found in human milk and saliva from healthy individuals, and more than 15 or even 100 μg/mL in patients suffering from leukemia, renal disease, and sarcoidosis), it may interfere with detections and quantification if it has strong interaction with GO. Therefore, one fundamental question that needs to be addressed before any development of GO based diagnostics method is how GO interacts with lysozyme. In this study, GO has demonstrated a strong interaction with lysozyme. This interaction is so strong that we are able to subsequently eliminate and separate lysozyme from aqueous solution onto the surface of GO. Furthermore, the strong electrostatic interaction also renders the selective adsorption of lysozyme on GO from a mixture of binary and ternary proteins. This selectivity is confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), fluorescence spectroscopy, and UV–vis absorption spectroscopy.
Fluorescent organic chemosensors for the detection of divalent copper with high selectivity and sensitivity are the subject of intense research in the recent years. Structurally, ionophore and fluorophore are two essential parts determining the resultant performance of the chemosensor. While much work has been focused on designing highly selective ligands, little attention has been paid to the possible influence of ionophore-fluorophore interaction on their properties in metal ion binding. We studied here fluorescent chemosensors based on the Gly-His peptidyl motif and found that the functionality of the chemosensors was greatly influenced by the spatial alignment of the fluorophore in the molecules. In Gly-His-Lys(Dns) (1), the dansyl group is on a side branch and does not interact with copper, while in Dpr(Dns)-His-Lys (2), the dansyl group is also on a side branch but the close placement allows it to directly participate in the binding with copper ions. Therefore, although dansyl can signal the binding event in both molecules, the mechanisms involved are quite different, and this difference resulted in different sensing performance, e.g., the selectivity. Even more strikingly, the dansyl group in Dns-Gly-His-Gly (3) exhibited a profound effect on the molecular complexation. The binding constant decreased, and binding mode was affected since only 1:1 binding was observed while in side-branch-labeled ligands, a 2:1 binding may also be involved. In contrast to those side-chain-labeled ligands, molecule 3 is extremely simple in structure and possesses superior detecting qualities such as selectivity, molecular sensitivity, and applicability in a wide range of pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.