The infiltration of monocytes into the CNS represents one of the early steps to inflammatory events in AIDS-related encephalitis and dementia. Increased activity of selected matrix metalloproteinases (MMPs) such as MMP-9 impairs the integrity of blood-brain barrier leading to enhanced monocyte infiltration into the CNS. In this study, we examined the effect of HIV-1 Tat
Inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) have been known to be involved in various pathophysiological processes such as inflammation. This study was performed to determine the regulatory function of superoxide dismutase (SOD) on the LPS-induced expression of iNOS, and COX-2 in RAW 264.7 cells. When a cell-permeable SOD, Tat-SOD, was added to the culture medium of RAW 264.7 cells, it rapidly entered the cells in a dose-dependent manner. Treatment of RAW 264.7 cells with Tat-SOD led to decrease in LPS-induced ROS generation. Pretreatment with Tat-SOD significantly inhibited LPS-induced expression of iNOS and NO production but had no effect on the expression of COX-2 and PGE2 production in RAW 264.7 cells. Tat-SOD inhibited LPS-induced NF-κB DNA binding activity, IκBα degradation and activation of MAP kinases. These data suggest that SOD differentially regulate expression of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells.
Oxidative stress plays a pivotal role in uncontrolled neuro-inflammation leading to many neurological diseases including Alzheimer's. One of the major antioxidant enzymes known to prevent deleterious effects due to oxidative stress is Cu,Zn-superoxide dismutase (SOD). In this study, we examined the regulatory function of SOD on the LPS-induced signaling pathways leading to NF-kappaB activation, expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in BV-2 cells using cell-permeable SOD. Treatment of BV-2 cells with cell-permeable SOD led to a decrease in LPS-induced reactive oxygen species (ROS) generation and significantly inhibited protein and mRNA levels of iNOS and COX-2 upregulated by LPS. Production of NO and PGE2 in LPS stimulated BV-2 cells was significantly abrogated by pretreatment with a cell-permeable SOD fusion protein. Furthermore, cell-permeable SOD inhibited LPS-induced NF-kappaB DNA-binding activity and activation of MAP kinases including ERK, JNK, and p38 in BV-2 cells. These data indicate that SOD has a regulatory function for LPS-induced NF-kappaB activation leading to expression of iNOS and COX-2 in BV-2 cells and suggest that cell-permeable SOD is a feasible therapeutic agent for regulation of ROS-related neurological diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.