A considerable portion of autoimmune encephalitis (AE) does not respond to conventional immunotherapies and subsequently has poor outcomes. We aimed to determine the efficacy of tocilizumab, an anti-interleukin-6 antibody, in rituximab-refractory AE compared with other treatment options. From an institutional cohort of AE, 91 patients with inadequate clinical response to first-line immunotherapy and following rituximab were retrospectively reviewed. Patients were grouped according to their further immunotherapy strategies. Thirty (33.0 %) patients were included in the tocilizumab group, 31 (34.0 %) in the additional rituximab group, and 30 (33.0 %) in the observation group. Outcomes were defined as the favorable modified Rankin Scale scores (≤2) at 1 and 2 months from the initiation of each treatment strategy and at the last follow-up. Favorable clinical response (improvement of the modified Rankin Scale scores by ≥ 2 points or achievement of the mRS scores ≤ 2) at the last follow-up was also analyzed. The tocilizumab group showed more frequent favorable mRS scores at 2 months from treatment initiation and at the last follow-up compared with those at the relevant time points of the remaining groups. The majority (89.5 %) of the patients with clinical improvement at 1 month from tocilizumab treatment maintained a long-term favorable clinical response. No serious adverse effects of rituximab or tocilizumab were reported. Therefore, we suggest that tocilizumab might be a good treatment strategy for treating AE refractory to conventional immunotherapies and rituximab. The tocilizumab-mediated clinical improvement manifests as early at 1 month after treatment initiation.
This work describes the fabrication of poly(4-styrenesulfonic acid)-doped polyaniline/graphene (PSS-doped PANI/graphene) nanocomposites and their use as sensing elements for hydrogen sulfide (H2S) detection. PSS with a weight-average molecular weight (Mw) of 1.96 × 10(6) was synthesized using low-temperature free-radical polymerization. The PSS was used as both a doping agent and a binding agent for the polymerization of aniline monomers in a biphasic system (water-chloroform) at -50 °C. The high Mw of PSS resulted in relatively large particle sizes and smooth surfaces of the PSS-doped PANI. These physical characteristics, in turn, resulted in low interparticle resistance and high conductivity. In addition, the PSS allowed homogeneous dispersion of reduced graphene sheets through electrostatic repulsion. The prepared PSS-doped PANI/graphene solutions showed good compatibility with flexible poly(ethylene terephthalate) (PET) substrates, making them suitable for flexible sensor electrodes. Changes in the charge-transport properties, such as protonation level, conjugation length, crystalline structure, and charge-transfer resistance, of the electrode materials were the main factors influencing the electrical and sensor performance of the PSS-doped PANI-based electrodes. PSS-doped PANI/graphene composites containing 30 wt% graphene showed the highest conductivity (168.4 S cm(-1)) and the lowest minimum detection level (MDL) for H2S gas (1 ppm). This result is consistent with the observed improvements in charge transport in the electrode materials via strong π-π stacking interactions between the PANI and the graphene sheets.
Hematopoiesis is regulated by crosstalk between long-term repopulating hematopoietic stem cells (LT-HSCs) and supporting niche cells in the bone marrow (BM). Here, we examine the role of CD82/KAI1 in niche-mediated LT-HSC maintenance. We found that CD82/KAI1 is expressed predominantly on LT-HSCs and rarely on other hematopoietic stem-progenitor cells (HSPCs). In Cd82(-/-) mice, LT-HSCs were selectively lost as they exited from quiescence and differentiated. Mechanistically, CD82-based TGF-β1/Smad3 signaling leads to induction of CDK inhibitors and cell-cycle inhibition. The CD82 binding partner DARC/CD234 is expressed on macrophages and stabilizes CD82 on LT-HSCs, promoting their quiescence. When DARC(+) BM macrophages were ablated, the level of surface CD82 on LT-HSCs decreased, leading to cell-cycle entry, proliferation, and differentiation. A similar interaction appears to be relevant for human HSPCs. Thus, CD82 is a functional surface marker of LT-HSCs that maintains quiescence through interaction with DARC-expressing macrophages in the BM stem cell niche.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.