Background We performed this study to establish a prediction model for 1-year neurological outcomes in out-of-hospital cardiac arrest (OHCA) patients who achieved return of spontaneous circulation (ROSC) immediately after ROSC using machine learning methods. Methods We performed a retrospective analysis of an OHCA survivor registry. Patients aged ≥ 18 years were included. Study participants who had registered between March 31, 2013 and December 31, 2018 were divided into a develop dataset (80% of total) and an internal validation dataset (20% of total), and those who had registered between January 1, 2019 and December 31, 2019 were assigned to an external validation dataset. Four machine learning methods, including random forest, support vector machine, ElasticNet and extreme gradient boost, were implemented to establish prediction models with the develop dataset, and the ensemble technique was used to build the final prediction model. The prediction performance of the model in the internal validation and the external validation dataset was described with accuracy, area under the receiver-operating characteristic curve, area under the precision-recall curve, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Futhermore, we established multivariable logistic regression models with the develop set and compared prediction performance with the ensemble models. The primary outcome was an unfavorable 1-year neurological outcome. Results A total of 1,207 patients were included in the study. Among them, 631, 139, and 153 were assigned to the develop, the internal validation and the external validation datasets, respectively. Prediction performance metrics for the ensemble prediction model in the internal validation dataset were as follows: accuracy, 0.9620 (95% confidence interval [CI], 0.9352–0.9889); area under receiver-operator characteristics curve, 0.9800 (95% CI, 0.9612–0.9988); area under precision-recall curve, 0.9950 (95% CI, 0.9860–1.0000); sensitivity, 0.9594 (95% CI, 0.9245–0.9943); specificity, 0.9714 (95% CI, 0.9162–1.0000); PPV, 0.9916 (95% CI, 0.9752–1.0000); NPV, 0.8718 (95% CI, 0.7669–0.9767). Prediction performance metrics for the model in the external validation dataset were as follows: accuracy, 0.8509 (95% CI, 0.7825–0.9192); area under receiver-operator characteristics curve, 0.9301 (95% CI, 0.8845–0.9756); area under precision-recall curve, 0.9476 (95% CI, 0.9087–0.9867); sensitivity, 0.9595 (95% CI, 0.9145–1.0000); specificity, 0.6500 (95% CI, 0.5022–0.7978); PPV, 0.8353 (95% CI, 0.7564–0.9142); NPV, 0.8966 (95% CI, 0.7857–1.0000). All the prediction metrics were higher in the ensemble models, except NPVs in both the internal and the external validation datasets. Conclusion We established an ensemble prediction model for prediction of unfavorable 1-year neurological outcomes in OHCA survivors using four machine learning methods. The prediction perfo...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.