BACKGROUND Exposure of agricultural workers in rice paddies to the insecticide chlorantraniliprole and its subsequent potential health risks were investigated during two scenarios (mixing/loading and hand‐held spraying). The exposure factors, such as the outer dosimeter, inner dosimeter, gauze, and nitrile gloves, were calculated using whole‐body dosimetry to measure dermal exposure. The inhalation exposure was determined using a fiberglass filter which is set with an Institute of Occupational Medicine (IOM) sampler. A recovery test was performed to evaluate the accuracy of the analytical method. RESULTS The exposure amounts of various matrices were calculated from extraction volume and concentration of the target compound. The dermal exposure to chlorantraniliprole was 0.6 mg [0.001% of the total active ingredient (a.i.)] for mixing and loading, and 28.6 mg (0.066% of the total a.i.) for application. The inhalation exposure to chlorantraniliprole was 7.2 μg (1.3%, 1.2 × 10−5% of the total applied a.i.) for mixing and loading, and 1.9 μg (0.006%, 4.4 × 10−6% of the total applied a.i.) for application. The most exposed part of the body was the hand (90.4%) during mixing and loading, whereas the primary sites during application were the thighs (32.8%) and shins (22.6%). For mixing and loading, the amount of actual dermal exposure was 5.5 μg day−1 and that of actual inhalation exposure was 21.9 μg day−1. By contrast, in the application, the amounts of actual dermal and actual inhalation exposures were 34 178.7 and 5.9 μg day−1, respectively. CONCLUSIONS The risk assessment results demonstrated that the risk of chlorantraniliprole exposure in rice paddies was low during application than during mixing and loading. © 2022 Society of Chemical Industry.
Weed management is important in modern crop protection. Chemical weed control using synthetic herbicides, however, suffers from resistance and ecotoxicity. Metabolomic investigation of allelopathy (or allelochemicals) may provide novel alternatives to synthetic herbicides. This study aimed to investigate the detailed metabolomic responses of plants to allelochemicals in Iris seed extracts. The seed extracts of Iris sanguinea showed the strongest growth inhibitory activity against alfalfa, barnyard grass, lettuce, and mustard. 3-Hydroxyirisquinone (3-[10(Z)-heptadecenyl]-2-hydroxy-5-methoxy-1,4-benzoquinone) was isolated as a major allelochemical from I. sanguinea seeds through bioassay-guided fractionation. The compound inhibited the growth of shoots and roots by browning root tips. Discriminant analysis identified 33 differentially regulated lettuce metabolites after treatment with 3-hydroxyirisquinone (3HIQ). Metabolic pathway analysis revealed that several metabolic pathways, including aromatic amino acid biosynthesis and respiratory pathways, were affected by the compounds. Differential responses of membrane lipids (accumulation of unsaturated fatty acids) and extensive formation of reactive oxygen species were observed in root tissues following treatment with 3HIQ. Overall, alkylbenzoquinone from I. sanguinea induced extensive metabolic modulation, oxidative stress, and growth inhibition. The metabolomic responses to allelochemicals may provide fundamental information for the development of allelochemical-based herbicides.
This study investigated the degradation characteristics and conducted a risk assessment of four pesticides (Diniconazole, Dinotefuran, Metconazole, and Tebuconazole) in the leaves and roots of radish. Radish was cultivated in two greenhouse fields, and samples were collected at 0, 1, 2, 3, 5, 7, and 10 days after pesticide application. Sample analysis was performed using LC-MS/MS, and the recovery rates ranged from 70.1% to 118.6%. The biological half-life of Diniconazole was found to be 6.2 days (leaf and root), Dinotefuran was 5.3 days (leaf) and 4.6 days (root), Metconazole was 9.3 days (leaf) and 3.2 days (root), and Tebuconazole was 8.0 days (leaf) and 5.1 days (root). After comparing the maximum residue limits (MRL) of each pesticide in Korea with the residues during the pre-harvest interval (PHI), Diniconazole showed a Hazard quotient (HQ) exceeding 1, indicating potential risks for true consumers. Furthermore, Tebuconazole showed an HQ of 0.3 or higher, indicating a significant level of risk.
The establishment of preharvest residue limits (PHRLs) is important to minimize damage to producer and consumers caused by agricultural products which pesticide residue exceeds maximum residue limits (MRLs). Dissipation patterns of acrinathrin and metaflumizone in Aster scaber in greenhouse were studied during 10 days in order to determine a pre-harvest interval after application. Acrinathrin and metaflumizone were applied in two different greenhouse, located in Taean-gun (field 1) and Gwangyang-si (field 2). Samples were collected at 0, 1, 2, 3, 5, 7, and 10 days after insecticides application. The recoveries of two insecticides analyzed by LC–MS/MS and HPLC–DAD were ranged from 77.1 to 111.3%. The half-lives of acrinathrin and metaflumizone residues respectively were 3.8 and 5.9 days in field 1 and 9.2 and 4.5 days in field 2. The PHRLs 10 days before harvesting A. scaber were 0.610 mg/kg (field 1), 0.946 mg/kg (field 2) for acrinathrin, and 5.930 mg/kg (field 1), 5.147 mg/kg (field 2) for metaflumizone. This results can be used as basic data for the establishment of PHRL in A. scaber.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.