Coastal freshwater wetlands are threatened by increased salinity due to relative sea level rise and reduced freshwater inputs. Remote radiometric measurement of freshwater marsh canopies to detect small shifts in water column salinity would be useful for assessing salinity encroachment. We measured leaf hyperspectral (300-1100 nm) reflectance of freshwater macrophytes (cattail, Typha latifolia and sea oxeye, Borrichia frutescens) in a field study in a subtropical brackish (2.5-4.5 parts per thousand salinity, per thousand) marsh to determine salinity effects on visible and near-infrared spectral band reflectance and to identify reflectance indices sensitive to small (1 per thousand) changes in wetland salinity. For sea oxeye, floating-position water band index [fWBI = R(900)/minimum(R(930) - R(980)), where R(lambda) = reflectance at band lambda], normalized difference vegetation index [NDVI = (R(774) - R(681))/(R(774) + R(681))], and a proposed wetland salinity reflectance ratio (WSRR = R(990)/R(933)) were sensitive to salinity with R2 of 40, 35, and 65%, respectively (p < 0.01). For cattail, NDVI and photochemical reflectance index [PRI = (R(531) - R(570))/(R(570) + R(531))] were sensitive to salinity with R2 of 29 and 33%, respectively (p
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.