This study applies the finite element method (FEM) in conjunction with an nanoindentation test to predict the loading curve and stress distribution of thin hard coatings. To verify the prediction of FEM simulation for loading and unloading process, the experimental data are compared with the results of current simulation. Loading curve is investigated for different material parameters, such as elastic modulus E, yield stress Y0 and tangent modulus ET of nanoindentation process, by finite element analysis. The effects of material properties of thin film on the stress distribution for loading and unloading in the nanoindentation are also investigated. Therefore, the loading curve and stress distribution will be prediction for the different material parameters of nanoindentation process.
This study applies the finite element method (FEM) to predict maximum forging load and effective strain in bevel gear forging. Maximum forging load and effective strain are determined for different process parameters, such as modules, number of teeth, and die temperature of the bevel gear forging, using the FEM. Finally, the prediction of the power requirement for the bevel gear warm forging is determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.