Beneficial effects attributed to green tea, such as its anticancer and antioxidant properties, may be mediated by (-)-epigallocatechin-3-gallate (EGCG). In this study, the effects of EGCG on cell proliferation and UV-induced apoptosis were investigated in normal epidermal keratinocytes. When topically applied to aged human skin, EGCG stimulated the proliferation of epidermal keratinocytes, which increased the epidermal thickness. In addition, this topical application also inhibited the UV-induced apoptosis of epidermal keratinocytes. EGCG was found to increase the phosphorylation of Bad protein at the Ser112 and Ser136. Moreover, EGCG-induced Erk phosphorylation was found to be critical for the phosphorylation of Ser112 in Bad protein, and the EGCG-induced activation of the Akt pathway was found to be involved in the phosphorylation of Ser136. Furthermore, EGCG increased Bcl-2 expression but decreased Bax expression, causing an increase in the Bcl-2-to-Bax ratio. In addition, we demonstrate the differential growth inhibitory effects of EGCG on cancer cells. In conclusion, this study demonstrates that EGCG promotes keratinocyte survival and inhibits the UV-induced apoptosis via two mechanisms: by phosphorylating Ser112 and Ser136 of Bad protein through Erk and Akt pathways, respectively, and by increasing the Bcl-2-to-Bax ratio. Moreover, these two proposed mechanisms of EGCG-induced cell proliferation may differ kinetically to promote keratinocyte survival.
Despite the importance of pentatricopeptide repeat (PPR) proteins in organellar RNA metabolism and plant development, the functions of many PPR proteins remain unknown. Here, we determined the role of a mitochondrial PPR protein (At1g52620) comprising 19 PPR motifs, thus named PPR19, in Arabidopsis thaliana. The ppr19 mutant displayed abnormal seed development, reduced seed yield, delayed seed germination, and retarded growth, indicating that PPR19 is indispensable for normal growth and development of Arabidopsis thaliana. Splicing pattern analysis of mitochondrial genes revealed that PPR19 specifically binds to the specific sequence in the 3'-terminus of the NADH dehydrogenase 1 (nad1) transcript and stabilizes transcripts containing the second and third exons of nad1. Loss of these transcripts in ppr19 leads to multiple secondary effects on accumulation and splicing of other nad1 transcripts, from which we can infer the order in which cis- and trans-spliced nad1 transcripts are normally processed. Improper splicing of nad1 transcripts leads to the absence of mitochondrial complex I and alteration of the nuclear transcriptome, notably influencing the alternative splicing of a variety of nuclear genes. Our results indicate that the mitochondrial PPR19 is an essential component in the splicing of nad1 transcripts, which is crucial for mitochondrial function and plant development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.