Flow behavior of wakes has been investigated in a three-phase slurry bubble column of 0.102 m ID and 1.5 m in height. The dependence of wake characteristics such as rising velocity, frequency, holdup and equivalent size on the operating variables was examined by employing an electric resistivity probe method. The gas velocity, liquid viscosity and solid content in the slurry phase were chosen as independent parameters. The rising velocity of wake region increased with an increase in the gas velocity (4.0-12.0 cm/s), liquid viscosity (1.0-50.0 mPa·s) or solid content (0-25 wt%) in the slurry phase. The frequency and holdup of wake phase increased with increasing gas velocity, but decreased with increasing liquid viscosity or solid content in the slurry phase. The equivalent size of wake phase increased with increasing gas velocity, liquid viscosity or solid content in the slurry phase. The wake properties and holdup were well correlated with operation variables within these experimental conditions.
− Holdup characteristics of bubble, wake and continuous liquid phases were investigated in bubble columns with viscous liquid media. Effects of column diameter(0.051, 0.076, 0.102 and 0.152 m ID), gas velocity(U G =0.02~0.16 m/s) and liquid viscosity(µ L =0.001~0.050 Pa·s) of continuous liquid media on the holdups of bubble, wake and continuous liquid phases were discussed. The three phase such as bubble, wake and continuous liquid phases were classified successfully by adapting the dual electrical resistivity probe method. Compressed filtered air and water or aqueous solutions of CMC(Carboxy Methyl Cellulose) were used as a gas and a liquid phase, respectively. To detect the wake as well as bubble phases in the bubble column continuously, a data acquisition system(DT 2805 Lab Card) with personal computer was used. The analog signals obtained from the probe circuit were processed to produce the digital data, from which the wake phase was detected behind the multi-bubbles as well as single bubbles rising in the bubble columns. The holdup of bubble and wake phases decreased but that of continuous liquid media increased, with an increase in the column diameter or liquid viscosity. However, the holdup of bubble and wake phases increased but that of continuous media decreased with an increase in the gas velocity. The holdup ratio of wake to wake to bubble phase decreased with an increase in the column diameter or gas velocity, however, increased with an increase in the viscosity of con-ε B 0.043D
− Axial and radial distributions of bubble holdup were investigated in a slurry bubble column with pilot plant scale(D=1.0 m). Effects of gas velocity, surface tension of continuous liquid medium and solid fraction in the slurry phase on the axial and radial distributions of bubble holdup were examined. The bubble holdup decreased with increasing radial dimensionless distance from the center of the column, while it increased with increasing dimensionless distance in the axial direction from the distributor, in all the cases studied. The radial non-uniformity of bubble holdup increased with increasing gas velocity but decreasing surface tension of liquid medium, while it was not dependent upon the solid fraction in the slurry phase. The axial non-uniformity of bubble holdup increased with increasing gas velocity, but it does not change considerably with variations of liquid surface tension or solid fraction in the slurry phase . The axial and radial distributions of bubble holdup were well correlated in terms of operating variables within this experimental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.