SUMMARY PRC2 creates the repressive mark histone H3 Lys27 trimethylation. Although PRC2 is involved in various biological processes, its role in glial development remains ambiguous. Here, we show that PRC2 is required for oligodendrocyte (OL) differentiation and myelination, but not for OL precursor formation. PRC2-deficient OL lineage cells differentiate into OL precursors, but they fail to trigger the molecular program for myelination, highlighting that PRC2 is essential for directing the differentiation timing of OL precursors. PRC2 null OL lineage cells aberrantly induce Notch pathway genes and acquire astrocytic features. The repression of the Notch pathway restores the myelination program and inhibits abnormal astrocytic differentiation in the PRC2-deficient OL lineage, indicating that Notch is a major target of PRC2. Altogether, our studies propose a specific action of PRC2 as a novel gatekeeper that determines the glial fate choice and the timing of OL lineage progression and myelination by impinging on the Notch pathway.
Background: In cancer, mutations of DNA methylation modification genes have crucial roles for epigenetic modifications genome-wide, which lead to the activation or suppression of important genes including tumor suppressor genes. Mutations on the epigenetic modifiers could affect the enzyme activity, which would result in the difference in genome-wide methylation profiles and, activation of downstream genes. Therefore, we investigated the effect of mutations on DNA methylation modification genes such as DNMT1, DNMT3A, MBD1, MBD4, TET1, TET2 and TET3 through a pan-cancer analysis. Methods: First, we investigated the effect of mutations in DNA methylation modification genes on genome-wide methylation profiles. We collected 3,644 samples that have both of mRNA and methylation data from 12 major cancer types in The Cancer Genome Atlas (TCGA). The samples were divided into two groups according to the mutational signature. Differentially methylated regions (DMR) that overlapped with the promoter region were selected using minfi and differentially expressed genes (DEG) were identified using EBSeq. By integrating the DMR and DEG results, we constructed a comprehensive DNA methylome profiles on a pan-cancer scale. Second, we investigated the effect of DNA methylations in the promoter regions on downstream genes by comparing the two groups of samples in 11 cancer types. To investigate the effects of promoter methylation on downstream gene activations, we performed clustering analysis of DEGs. Among the DEGs, we selected highly correlated gene set that had differentially methylated promoter regions using graph based sub-network clustering methods. Results: We chose an up-regulated DEGs cluster where had hypomethylated promoter in acute myeloid leukemia (LAML) and another down-regulated DEGs cluster where had hypermethylated promoter in colon adenocarcinoma (COAD). To rule out effects of gene regulation by transcription factor (TF), if differentially expressed TFs bound to the promoter of DEGs, that DEGs did not included to the gene set that effected by DNA methylation modifiers.
miRNAs are small non-coding RNAs that regulate gene expression by binding to the 3′-UTR of genes. Many recent studies have reported that miRNAs play important biological roles by regulating specific mRNAs or genes. Many sequence-based target prediction algorithms have been developed to predict miRNA targets. However, these methods are not designed for condition-specific target predictions and produce many false positives; thus, expression-based target prediction algorithms have been developed for condition-specific target predictions. A typical strategy to utilize expression data is to leverage the negative control roles of miRNAs on genes. To control false positives, a stringent cutoff value is typically set, but in this case, these methods tend to reject many true target relationships, i.e., false negatives. To overcome these limitations, additional information should be utilized. The literature is probably the best resource that we can utilize. Recent literature mining systems compile millions of articles with experiments designed for specific biological questions, and the systems provide a function to search for specific information. To utilize the literature information, we used a literature mining system, BEST, that automatically extracts information from the literature in PubMed and that allows the user to perform searches of the literature with any English words. By integrating omics data analysis methods and BEST, we developed Context-MMIA, a miRNA-mRNA target prediction method that combines expression data analysis results and the literature information extracted based on the user-specified context. In the pathway enrichment analysis using genes included in the top 200 miRNA-targets, Context-MMIA outperformed the four existing target prediction methods that we tested. In another test on whether prediction methods can re-produce experimentally validated target relationships, Context-MMIA outperformed the four existing target prediction methods. In summary, Context-MMIA allows the user to specify a context of the experimental data to predict miRNA targets, and we believe that Context-MMIA is very useful for predicting condition-specific miRNA targets.
BackgroundThe main research topic in this paper is how to compare multiple biological experiments using transcriptome data, where each experiment is measured and designed to compare control and treated samples. Comparison of multiple biological experiments is usually performed in terms of the number of DEGs in an arbitrary combination of biological experiments. This process is usually facilitated with Venn diagram but there are several issues when Venn diagram is used to compare and analyze multiple experiments in terms of DEGs. First, current Venn diagram tools do not provide systematic analysis to prioritize genes. Because that current tools generally do not fully focus to prioritize genes, genes that are located in the segments in the Venn diagram (especially, intersection) is usually difficult to rank. Second, elucidating the phenotypic difference only with the lists of DEGs and expression values is challenging when the experimental designs have the combination of treatments. Experiment designs that aim to find the synergistic effect of the combination of treatments are very difficult to find without an informative system.ResultsWe introduce Venn-diaNet, a Venn diagram based analysis framework that uses network propagation upon protein-protein interaction network to prioritizes genes from experiments that have multiple DEG lists. We suggest that the two issues can be effectively handled by ranking or prioritizing genes with segments of a Venn diagram. The user can easily compare multiple DEG lists with gene rankings, which is easy to understand and also can be coupled with additional analysis for their purposes. Our system provides a web-based interface to select seed genes in any of areas in a Venn diagram and then perform network propagation analysis to measure the influence of the selected seed genes in terms of ranked list of DEGs.ConclusionsWe suggest that our system can logically guide to select seed genes without additional prior knowledge that makes us free from the seed selection of network propagation issues. We showed that Venn-diaNet can reproduce the research findings reported in the original papers that have experiments that compare two, three and eight experiments. Venn-diaNet is freely available at: http://biohealth.snu.ac.kr/software/venndianet
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.