When an indoor disaster occurs, the disaster site can become very difficult to escape from due to the scenario or building. Most people evacuate when a disaster situation occurs, but there are also disaster victims who cannot evacuate and are isolated. Isolated disaster victims often cannot move quickly because they do not have all the necessary information about the disaster, and secondary damage can occur. Rescue workers must rescue disaster victims quickly, before secondary damage occurs, but it is not always easy to locate isolated victims within a disaster site. In addition, rescue operators can also suffer from secondary damage because they are exposed to disaster situations. We present a HHD technique that can detect isolated victims in indoor disasters relatively quickly, especially when covered by fire smoke, by merging one-stage detectors YOLO and RetinaNet. HHD is a technique with a high human detection rate compared to other techniques while using a 1-stage detector method that combines YOLO and RetinaNet. Therefore, the HHD of this paper can be beneficial in future indoor disaster situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.