We present a simple, cost-effective, large scale fabrication technique for antireflective disordered subwavelength structures (d-SWSs) on GaAs substrate by Ag etch masks formed using spin-coated Ag ink and subsequent inductively coupled plasma (ICP) etching process. The antireflection characteristics of GaAs d-SWSs rely on their geometric profiles, which were controlled by adjusting the distribution of Ag etch masks via changing the concentration of Ag atoms and the sintering temperature of Ag ink as well as the ICP etching conditions. The fabricated GaAs d-SWSs drastically reduced the reflection loss compared to that of bulk GaAs (>30%) in the wavelength range of 300-870 nm. The most desirable GaAs d-SWSs for practical solar cell applications exhibited a solar-weighted reflectance (SWR) of 2.12%, which is much lower than that of bulk GaAs (38.6%), and its incident angle-dependent SWR was also investigated.
A large area magnetron source with the strongly confined magnetic field from all direction is applied for the deposition of flexible ultrathin ITO (UT-ITO) films of thickness 30 nm at room temperature for their applications as transparent electrodes. The films show a minimum resistivity of ∼5.0 x 10-4 Ωcm and high transmittance >80% at wavelengths of 400-700 nm. Measurements and data reveal that a high plasma density, high energy flux, and a relatively low concentration of negative oxygen ions (NOIs) to the flux of positive ions (PIs) induce lower mechanical stress to the growing films, which enables a lower resistivity and superior crystallinity with the smooth surface. The capability of the magnetron source and the characteristic plasma properties are studied in light of the resulting film properties. The considerably lower resistivity with higher carrier concentration and mobility of the UT-ITO films prepared at a high power density of 3 W/cm2 and a low O2 gas flow can be attributed to the growth of crystallized UT-ITO films, resulting in the combination of the oxygen vacancy and substitution of Sn4+ to In3+ site through the deposition of a high energy flux and a low flux ratio of NOIs to PIs.
Thermal depolymerization of ultrahigh-molecular-weight (UHMW) sodium hyaluronate (NaHA) was studied systematically by using frit-inlet asymmetrical flow field-flow fractionation/multiangle light scattering/differential refractive index (FI-AFlFFF/MALS/DRI). FI-AFlFFF was utilized for the size separation of NaHA samples which had been thermally degraded for varied treatment times, followed by light-scattering detection to determine MW and structural information of degraded NaHA products. Analysis of NaHA products showed time-dependent depolymerization of raw molecules into smaller-MW components, as well as unfolding of compact structures of UHMW NaHA. To determine whether the observed decrease in MW of sodium hyaluronate originated from the chain degradation of UHMW molecules or from dissociation of entangled complex particles that may have been formed by intermolecular association, narrow size fractions (1 x 10(7)-6 x 10(7) and >6 x 10(7) MW) of NaHA molecules were collected during FlFFF separation and followed by thermal treatment. Subsequent FI-AFlFFF/MALS analysis of collected fractions after thermal treatment suggested that the ultrahigh-MW region (>10(7) Da) of NaHA is likely to result from supermolecular structures formed by aggregation of large molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.