Dynamic regulation of glucose flux between aerobic glycolysis and the pentose phosphate pathway (PPP) during epithelial–mesenchymal transition (EMT) is not well-understood. Here we show that Snail (SNAI1), a key transcriptional repressor of EMT, regulates glucose flux toward PPP, allowing cancer cell survival under metabolic stress. Mechanistically, Snail regulates glycolytic activity via repression of phosphofructokinase, platelet (PFKP), a major isoform of cancer-specific phosphofructokinase-1 (PFK-1), an enzyme involving the first rate-limiting step of glycolysis. The suppression of PFKP switches the glucose flux towards PPP, generating NADPH with increased metabolites of oxidative PPP. Functionally, dynamic regulation of PFKP significantly potentiates cancer cell survival under metabolic stress and increases metastatic capacities in vivo. Further, knockdown of PFKP rescues metabolic reprogramming and cell death induced by loss of Snail. Thus, the Snail-PFKP axis plays an important role in cancer cell survival via regulation of glucose flux between glycolysis and PPP.
The liver is a central organ that performs a wide range of functions such as detoxification and metabolic homeostasis. Since it is a metabolically active organ, liver is particularly susceptible to oxidative stress. It is well documented that liver diseases including hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma are highly associated with antioxidant capacity. NF-E2-related factor-2 (Nrf2) is an essential transcription factor that regulates an array of detoxifying and antioxidant defense genes expression in the liver. It is activated in response to electrophiles and induces its target genes by binding to the antioxidant response element (ARE). Therefore, the roles of the Nrf2-ARE pathway in liver diseases have been extensively investigated. Studies from several animal models suggest that the Nrf2-ARE pathway collectively exhibits diverse biological functions against viral hepatitis, alcoholic and nonalcoholic liver disease, fibrosis, and cancer via target gene expression. In this review, we will discuss the role of the Nrf2-ARE pathway in liver pathophysiology and the potential application of Nrf2 as a therapeutic target to prevent and treat liver diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.