Epoxies toughened with two reactive liquid rubbers, an epoxy‐terminated butadiene acrylonitrile rubber (ETBN) and an amino‐terminated butadiene acrylonitrile rubber (ATBN), were prepared and studied in terms of their structure property relationships. A two‐phase structure was formed, consisting of spherical rubber particles dispersed in an epoxy matrix. A broad distribution of rubber particles was observed in all the materials with most of the particles ranging in size from 1 to 4 μm, but some particles exceeding 20 μm were also found. Impact strength, plane strain fracture toughness (KIC), and fracture energy (GIC) were increased, while Young's modulus and yield strength decreased slightly with increasing rubber content and volume fraction of the dispersed phase. Both GIC and KIC were found to increase with increasing apparent molecular weight between crosslinks and decreasing yield strength. The increased size of the plastic zone at the crack tip associated with decreasing yield strength could be the cause of the increased toughness. An ATBN‐toughened system containing the greatest amount of epoxy sub‐inclusion in the rubbery phase demonstrated the best fracture toughness in this series. In the present systems, rubber‐enhanced shear deformation of the matrix is considered to be the major toughening mechanism. Curing conditions and the miscibility between the liquid rubber and the epoxy resin determine the phase morphology of the resulting two‐phase systems. Kerner's equation successfully describes the modulus dependence on volume fraction for the two‐phase epoxy materials.
Proton transfer polymerization between thiol and epoxide groups is shown to be an adaptable and utilitarian method for the synthesis of hydrogels. For instance, the polymerization catalyst can be organic or inorganic, and the polymerization medium can be pure water, buffer solutions, or organic solvents. The gelation mechanism can be triggered at ambient conditions, at a physiological temperature of 37 °C, or through using light as an external stimulus. The ambient and photochemical methods both allow for nanoimprint lithography to produce freestanding patterned thick films. The required thiol- and epoxide-carrying precursors can be chosen from a long list of commercially available small molecular as well as polymeric materials. The water uptake, mechanical, and biodegradation properties of the gels can, therefore, be tuned through the choice of appropriate gelation precursors and polymerization conditions. Finally, the thio-ether groups of the cross-linked networks can be functionalized through a postgelation modification reaction to access sulfonium-based cationic structures. Such structural changes endow antibacterial properties to the networks. In their pristine form, however, the gels are biocompatible and nonadhesive, allowing cancer cells to grow in a cluster formation.
Changes in the fast dynamics of polybutadiene (PB) with molecular weight and molecular architecture have been investigated by light and neutron scattering spectroscopy. Differences observed in the fast dynamics of various molecules correlate with differences seen in the value of the glass-transition temperature (T g ). The segmental and fast dynamics as well as the value of T g are dependent on the total molecular weight of the molecule but independent of its architecture. In other words, the dynamics of PB depend on the number of segments in the molecule but do not show a significant dependence on how the segments are connected (molecular topology), even for arm molecular weights commensurate with the entanglement molecular weight. Literature data for the T g 's of highly branched, phenolic-terminated dendritic poly(benzyl ethers) of various core structures exhibit the same trend. There is no explanation for why the segmental motion appears to be sensitive to the total molecular weight of the molecule but is independent of its architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.