A new nonribosomal peptide, nyuzenamide C (1), was discovered from riverine sediment-derived Streptomyces sp. DM14. Comprehensive analysis of the spectroscopic data of nyuzenamide C (1) revealed that 1 has a bicyclic backbone composed of six common amino acid residues (Asn, Leu, Pro, Gly, Val, and Thr) and four nonproteinogenic amino acid units, including hydroxyglycine, β-hydroxyphenylalanine, p-hydroxyphenylglycine, and 3,β-dihydroxytyrosine, along with 1,2-epoxypropyl cinnamic acid. The absolute configuration of 1 was proposed by Jbased configuration analysis, the advanced Marfey's method, quantum mechanics-based DP4 calculations, and bioinformatic analysis of its nonribosomal peptide synthetase biosynthetic gene cluster. Nyuzenamide C (1) displayed antiangiogenic activity in human umbilical vein endothelial cells and induced quinone reductase in murine Hepa-1c1c7 cells.
A genomic and spectroscopic signature-based search revealed a cycloaromatized enediyne, jejucarboside A (1), from a marine actinomycete strain. The structure of 1 was determined as a new cyclopenta[a]indene glycoside bearing carbonate functionality by nuclear magnetic resonance, high-resolution mass spectrometry (MS), MS/MS, infrared spectroscopy, and a modified Mosher's method. An iterative enediyne synthase pathway has been proposed for the putative biosynthesis of 1 by genomic analysis. Jejucarboside A exhibited cytotoxicity against the HCT116 colon carcinoma cells.
The logical and effective discovery of macrolactams, structurally unique natural molecules with diverse biological activities, has been limited by a lack of targeted search methods. Herein, a targeted discovery method for natural macrolactams was devised by coupling genomic signature-based PCR screening of a bacterial DNA library with spectroscopic signature-based early identification of macrolactams. DNA library screening facilitated the efficient selection of 43 potential macrolactam-producing strains (3.6% of 1,188 strains screened). The PCR amplicons of the amine-deprotecting enzyme-coding genes were analyzed to predict the macrolactam type (α-methyl, α-alkyl, or β-methyl) produced by the hit strains. 1 H− 15 N HSQC-TOCSY NMR analysis of 15 Nlabeled culture extracts enabled macrolactam detection and structural type assignment without any purification steps. This method identified a high-titer Micromonospora strain producing salinilactam (1), a previously reported α-methyl macrolactam, and two Streptomyces strains producing new α-alkyl and β-methyl macrolactams. Subsequent purification and spectroscopic analysis led to the structural revision of 1 and the discovery of muanlactam (2), an α-alkyl macrolactam with diene amide and tetraene chromophores, and concolactam (3), a β-methyl macrolactam with a [16,6,6]-tricyclic skeleton. Detailed genomic analysis of the strains producing 1−3 identified putative biosynthetic gene clusters and pathways. Compound 2 displayed significant cytotoxicity against various cancer cell lines (IC 50 = 1.58 μM against HCT116), whereas 3 showed inhibitory activity against Staphylococcus aureus sortase A. This genomic and spectroscopic signature-based method provides an efficient search strategy for new natural macrolactams and will be generally applicable for the discovery of nitrogen-bearing natural products.
Four new chlorinated cycloaromatized enediyne compounds, jejucarbosides B–E (1–4), were discovered together with previously-identified jejucarboside A from a marine actinomycete strain. Compounds 1–4 were identified as new chlorinated cyclopenta[a]indene glycosides based on 1D and 2D nuclear magnetic resonance, high-resolution mass spectrometry, and circular dichroism (CD) spectra. Jejucarbosides B and E bear a carbonate functional group whereas jejucarbosides C and D are variants possessing 1,2-diol by losing the carbonate functionality. It is proposed that the production of 1–4 occurs via Bergman cycloaromatization capturing Cl- and H+ in the alternative positions of a p-benzyne intermediate derived from a 9-membered enediyne core. Jejucarboside E (4) displayed significant cytotoxicity against human cancer cell lines including SNU-638, SK-HEP-1, A549, HCT116, and MDA-MB-231, with IC50 values of 0.31, 0.40, 0.25, 0.29, and 0.48 μM, respectively, while jejucarbosides B–D (1–3) showed moderate or no cytotoxic effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.