Introduction Physical inactivity is prevalent in pregnant women, and innovative strategies to promote physical activity are strongly needed. The purpose of the study was to test a 12-week mobile health (mHealth) physical activity intervention for feasibility and potential efficacy. Methods Participants were recruited between December 2012 and February 2014 using diverse recruitment methods. Thirty pregnant women between 10 and 20 weeks of gestation were randomized to an intervention (mobile phone app plus Fitbit) or a control (Fitbit) group. Both conditions targeted gradual increases in physical activity. The mHealth intervention included daily messages and a mobile phone activity diary with automated feedback and self-monitoring systems. Results On monthly average, 4 women were screened for initial eligibility by telephone and 2.5 were randomized. Intervention participants had a 1096 ± 1898 step increase in daily steps compared to an increase of 259 ± 1604 steps in control participants at 12 weeks. The change between groups in weekly mean steps per day during the 12-week study period was not statistically significant (p = 0.38). The intervention group reported lower perceived barrier to being active, lack of energy, than the control group at 12-week visit (p = 0.02). The rates of responding to daily messages and using the daily diary through the mobile app declined during the 12 week study period. Discussion It was difficult to recruit and randomize inactive women who wanted to increase physical activity during pregnancy. Pregnant women who were motivated to increase physical activity might find using mobile technologies in assessing and promoting PA acceptable. Possible reasons for the non-significant treatment effect of the mHealth intervention on physical activity are discussed. Public awareness of safety and benefits of physical activity during pregnancy should be promoted. Clinicaltrials.Gov Identifier NCT01461707.
Objective To review the effectiveness of physical activity (PA) and PA plus diet interventions in managing weight among overweight or obese (OW/OB) pregnant or postpartum women. Methods Four databases were searched for randomized controlled studies published between January 2000 and December 2011 that reported weight change outcomes of PA interventions in OW/OB pregnant or postpartum women. PA alone as well as PA plus diet interventions were included. Results Of 681 abstracts identified, 11 were included (7 trials with pregnant women and 4 trials with postpartum women). Overall, we found that PA interventions were effective for OW/OB pregnant as well as postpartum women. On average, pregnant women in the intervention groups gained 0.91 kg less (95% CI: −1.76, −0.06) compared to those in the usual care groups. Postpartum women in the intervention groups significantly lost more body weight (−1.22 kg; 95% CI: −1.89, −0.56) than those in the control groups. In the subgroup analyses by PA intervention types, supervised PA plus diet interventions were the most effective. Conclusions PA plus diet interventions may require more than advice; supervised PA programs or personalized prescription/goals are needed to prevent excessive weight gain for OW/OB pregnant women and excessive weight retention for OW/OB postpartum women.
Branched-chain amino acid (BCAA) catabolism and high levels of enzymes in the BCAA metabolic pathway have recently been shown to be associated with cancer growth and survival. However, the precise roles of BCAA metabolism in cancer growth and survival remain largely unclear. Here, we found that BCAA metabolism has an important role in human pancreatic ductal adenocarcinoma (PDAC) growth by regulating lipogenesis. Compared with nontransformed human pancreatic ductal (HPDE) cells, PDAC cells exhibited significantly elevated BCAA uptake through solute carrier transporters, which were highly upregulated in pancreatic tumor tissues compared with normal tissues. Branched-chain amino-acid transaminase 2 (BCAT2) knockdown markedly impaired PDAC cell proliferation, but not HPDE cell proliferation, without significant alterations in glutamate or reactive oxygen species levels. Furthermore, PDAC cell proliferation, but not HPDE cell proliferation, was substantially inhibited upon knockdown of branched-chain α-keto acid dehydrogenase a (BCKDHA). Interestingly, BCKDHA knockdown had no significant effect on mitochondrial metabolism; that is, neither the level of tricarboxylic acid cycle intermediates nor the oxygen consumption rate was affected. However, BCKDHA knockdown significantly inhibited fatty-acid synthesis, indicating that PDAC cells may utilize BCAAs as a carbon source for fatty-acid biosynthesis. Overall, our findings show that the BCAA metabolic pathway may provide a novel therapeutic target for pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.