We present the first results from the B-fields In STar-forming Region Observations (BISTRO) survey, using the Sub-millimetre Common-User Bolometer Array2 camera, with its associated polarimeter (POL-2), on the James Clerk Maxwell Telescope in Hawaii. We discuss the survey's aims and objectives. We describe the rationale behind the survey, and the questions thatthe survey will aim to answer. The most important of these is the role of magnetic fields in the star formation process on the scale of individual filaments and cores in dense regions. We describe the data acquisition and reduction processes for POL-2, demonstrating both repeatability and consistency with previous data. We present a first-look analysis of the first results from the BISTRO survey in the OMC1 region. We see that the magnetic field lies approximately perpendicular to the famous "integral filament" in the densest regions of that filament. Furthermore, we see an "hourglass" magnetic field morphology extending beyond the densest region of the integral filament into the less-dense surrounding material, and discuss possible causes for this. We also discuss the more complex morphology seen along the Orion Bar region. We examine the morphology of the field along the lower-density northeastern filament. We find consistency with previous theoretical models that predict magnetic fields lying parallel to low-density, non-self-gravitating filaments, and perpendicular to higher-density, self-gravitating filaments.
We present 850 µm imaging polarimetry data of the ρ Oph-A core taken with the Submillimeter Common-User Bolometer Array-2 (SCUBA-2) and its polarimeter (POL-2), as part of our ongoing survey project, BISTRO (Bfields In STar forming RegiOns). The polarization vectors are used to identify the orientation of the magnetic field projected on the plane of the sky at a resolution of 0.01 pc. We identify 10 subregions with distinct polarization fractions and angles in the 0.2 pc ρ Oph A core; some of them can be part of a coherent magnetic field structure in the ρ Oph region. The results are consistent with previous observations of the brightest regions of ρ Oph-A, where the degrees of polarization are at a level of a few percents, but our data reveal for the first time the magnetic field structures in the fainter regions surrounding the core where the degree of polarization is much higher (> 5%). A comparison with previous near-infrared polarimetric data shows that there are several magnetic field components which are consistent at near-infrared and submillimeter wavelengths. Using the Davis-Chandrasekhar-Fermi method, we also derive magnetic field strengths in several sub-core regions, which range from approximately 0.2 to 5 mG. We also find a correlation between the magnetic field orientations projected on the sky with the core centroid velocity components.
We present the 850 μm polarization observations toward the IC5146 filamentary cloud taken using the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) and its associated polarimeter (POL-2), mounted on the James Clerk Maxwell Telescope, as part of the B-fields In STar forming Regions Observations. This work is aimed at revealing the magnetic field morphology within a core-scale (1.0 pc) hub-filament structure (HFS) located at the end of a parsec-scale filament. To investigate whether the observed polarization traces the magnetic field in the HFS, we analyze the dependence between the observed polarization fraction and total intensity using a Bayesian approach with the polarization fraction described by the Rice likelihood function, which can correctly describe the probability density function of the observed polarization fraction for low signal-to-noise ratio data. We find a power-law dependence between the polarization fraction and total intensity with an index of 0.56 in A V ∼20-300 mag regions, suggesting that the dust grains in these dense regions can still be aligned with magnetic fields in the IC5146 regions. Our polarization maps reveal a curved magnetic field, possibly dragged by the contraction along the parsec-scale filament. We further obtain a magnetic field strength of 0.5±0.2 mG toward the central hub using the Davis-Chandrasekhar-Fermi method, corresponding to a mass-to-flux criticality of ∼1.3±0.4 and an Alfvénic Mach number of <0.6. These results suggest that gravity and magnetic field are currently of comparable importance in the HFS and that turbulence is less important.
Measurement of magnetic field strengths in a molecular cloud is essential for determining the criticality of magnetic support against gravitational collapse. In this paper, as part of the JCMT BISTRO survey, we suggest a new application of the Davis-Chandrasekhar-Fermi (DCF) method to estimate the distribution of magnetic field strengths in the OMC-1 region. We use observations of dust polarization emission at 450 and 850 μm, and C 18 O (3-2) spectral line data obtained with the JCMT. We estimate the volume density, the velocity dispersion, and the polarization angle dispersion in a box, 40″ × 40″ (5×5 pixels), which moves over the OMC-1 region. By substituting three quantities in each box with the DCF method, we get magnetic field strengths over the OMC-1 region. We note that there are very large uncertainties in the inferred field strengths, as discussed in detail in this paper. The field strengths vary from 0.8 to
We present the results of H i 21 cm line observations to explore the nature of the high-velocity (HV) H i gas at ∼ 173• . In low-resolution H i surveys this HV gas appears as faint, wing-like, H i emission that extends to velocities beyond those allowed by Galactic rotation. We designate this feature as Forbidden Velocity Wing (FVW) 172.8+1.5. Our high-resolution (3. 4) Arecibo H i observations show that FVW 172.8+1.5 is composed of knots, filaments, and ring-like structures distributed over an area of a few degrees in extent. These HV H i emission features are confined within the limits of the H ii complex G173+1.5, which is composed of five Sharpless H ii regions distributed along a radio continuum loop of size 4.• 4 × 3.• 4, or ∼138 pc × 107 pc, at a distance of 1.8 kpc. G173+1.5 is one of the largest star-forming regions in the outer Galaxy. We demonstrate that the HV H i gas is well correlated with the radio continuum loop and that the two seem to trace an expanding shell. The expansion velocity of the shell is large (55 km s −1 ), suggesting that it represents a supernova remnant (SNR). We derive physical parameters for the shell and show these to be consistent with the object being an SNR. We also detect hot X-ray-emitting gas inside the H ii complex by analyzing the ROSAT all-sky X-ray background survey data. This also supports the SNR interpretation. We conclude that the HV H i gas and the X-rays are most likely the products of a supernova explosion(s) within the H ii complex, possibly in a cluster that triggered the formation of these H ii regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.