Radiomics has been spotlighted as imaging biomarker for estimation of intratumoral heterogeneity (ITH) which is regarded as the main reason for resistance to tumor treatment. Although a number of studies has shown clinical evidences that separate measurement of metabolic ITH by texture features (TFs) on 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) has prognostic ability in various tumors, there has been no consensus regarding the best parameter representing ITH. Besides, it is yet uncertain that TFs are useful for estimation of histopathologic markers, prediction of response to neoadjuvant chemotherapy (NAC), or prognostic ability in breast cancer. To depart from the traditional approach, we evaluated the clinical usefulness of integrated metabolic radiomics using unsupervised clustering with 109 TFs measured from pretreatment 18F-FDG PET/CT scans of 73 patients with locally advanced breast cancer (LABC) underwent NAC before surgery. Our study shows that metabolic radiomics patterns of LABC are associated with Ki67 expression, achievement of pathologic complete response after NAC, and risk of recurrence. Integrated metabolic radiomics has potential for clinically relevant pretreatment biomarker with predictive and prognostic ability for personalized management in LABC.
AimsIdentification of invasive and radionuclide imaging markers of coronary plaque vulnerability by a single, widely available non-invasive technique may provide the opportunity to identify vulnerable plaques and vulnerable patients in broad populations. Our aim was to assess whether radiomic analysis outperforms conventional assessment of coronary computed tomography angiography (CTA) images to identify invasive and radionuclide imaging markers of plaque vulnerability.Methods and resultsWe prospectively included patients who underwent coronary CTA, sodium-fluoride positron emission tomography (NaF18-PET), intravascular ultrasound (IVUS), and optical coherence tomography (OCT). We assessed seven conventional plaque features and calculated 935 radiomic parameters from CTA images. In total, 44 plaques of 25 patients were analysed. The best radiomic parameters significantly outperformed the best conventional CT parameters to identify attenuated plaque by IVUS [fractal box counting dimension of high attenuation voxels vs. non-calcified plaque volume, area under the curve (AUC): 0.72, confidence interval (CI): 0.65–0.78 vs. 0.59, CI: 0.57–0.62; P < 0.001], thin-cap fibroatheroma by OCT (fractal box counting dimension of high attenuation voxels vs. presence of low attenuation voxels, AUC: 0.80, CI: 0.72–0.88 vs. 0.66, CI: 0.58–0.73; P < 0.001), and NaF18-positivity (surface of high attenuation voxels vs. presence of two high-risk features, AUC: 0.87, CI: 0.82–0.91 vs. 0.65, CI: 0.64–0.66; P < 0.001).ConclusionCoronary CTA radiomics identified invasive and radionuclide imaging markers of plaque vulnerability with good to excellent diagnostic accuracy, significantly outperforming conventional quantitative and qualitative high-risk plaque features. Coronary CTA radiomics may provide a more accurate tool to identify vulnerable plaques compared with conventional methods. Further larger population studies are warranted.
Metabolic and textural parameters from initial [(18)F]FDG PET/CT scans could be indexes to assess tumour heterogeneity for the prediction of neoadjuvant radiation chemotherapy response and recurrence in LARC.
The diagnostic performance of invasive physiological indices showed no differences in the prediction of myocardial ischemia defined by CFR. Using RFR as a reference, FFR showed a better discrimination and reclassification ability than resting indices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.