Activated carbon fibers (ACFs) were surface modified with oxygen plasma at low pressure. The novel effects of the plasma treatment on the microstructural properties of the ACFs were characterized using the Brunauer, Emmett, and Teller method and scanning electron microscopy. Micropores developed on the ACFs. Moreover, the specific surface area and micropore volume increased by 10% at a certain plasma treatment time and power. The changes in the structural properties of the ACFs are discussed in detail with the respect of plasma etching. X-ray photoelectron spectroscopy revealed new oxygen-containing groups, such as CsO, CdO, and OsCdO, had formed on the surface of the ACFs after plasma treatment. Plasma surface oxidative reactions such as the generation of radicals, the combination of the radicals and active oxygen species in the plasma chamber, and the generation of the various oxygen-containing groups are believed to have occurred. The effect of the plasma treatment parameters such as plasma treatment time and power was examined from the perspective of both surface structure and chemistry. It was observed that the micropores and surface functionalities of the ACFs were increased under moderate treatment conditions (50 s and 100 W).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.