A limit to the clinical benefit of radiotherapy is not an incapacity to eliminate tumor cells but rather a limit on its capacity to do so without destroying normal tissue and inducing inflammation. Recent evidence reveals that the inflammasome is essential for mediating radiation-induced cell and tissue damage. In this study, using primary cultured bone marrow-derived macrophages (BMDM) and a mouse radiation model, we explored the role of NLRP3 inflammasome activation and the secondary pyroptosis underlying radiation-induced immune cell death. We observed an increasing proportion of pyroptosis and elevating Caspase-1 activation in 10 and 20 Gy radiation groups. Nlrp3 knock out significantly diminished the quantity of cleaved-Caspase-1 (p10) and IL-1β as well as the proportion of pyroptosis. Additionally, in vivo research shows that 9.5 Gy of radiation promotes Caspase-1 activation in marginal zone cells and induces death in mice, both of which can be significantly inhibited by knocking out Nlrp3. Thus, based on these findings, we conclude that the NLRP3 inflammasome activation mediates radiation-induced pyroptosis in BMDMs. Targeting NLRP3 inflammasome and pyroptosis may serve as effective strategies to diminish injury caused by radiation.
Psoriasis is characterized by keratinocyte proliferation and immune cell infiltration. M2 isoform of pyruvate kinase (PKM2) was reported to have an important role in cell proliferation, which is a rate-limiting enzyme that regulates the final step of glycolysis. However, how PKM2 regulates cell metabolism and proliferation in psoriatic keratinocytes is still poorly understood. Interestingly, we found that PKM2 was highly expressed in psoriatic epidermis from patients and mouse models. PKM2 overexpression promoted keratinocyte glycolytic metabolism while knockdown inhibited keratinocyte proliferation and glycolysis. Mice lacking PKM2 specifically in keratinocytes, pharmacological inhibition of PKM2 or glycolysis inhibited keratinocyte proliferation and showed obvious remission in an imiquimod-induced psoriatic mouse model. Moreover, the inhibitor of the EGF-receptor blocked EGF-stimulated PKM2 expression and glycolysis in keratinocytes. We identify PKM2 as an upregulated gene in psoriasis. PKM2 is essential in keratinocyte over-proliferation and may represent a therapeutic target for psoriasis.
The polarization of tumor‐associated macrophages (TAMs) and tumor‐associated neutrophils (TANs), especially from the antitumoral phenotype to the protumoral phenotype under certain conditions, has an important influence on the progression of tumors. However, the interactions and combined prognosis of these cells are poorly known. Here, we detected the infiltration of CD68+ TAMs, CD163+ TAMs, and CD66b+ TANs in the specimens from 662 patients with GC by immunohistochemistry. The results showed that the infiltration of each of CD163+, CD68+, and CD66b+ cells in GC tissue was significantly increased and independently associated with GC prognosis. Strong collinearity (r = 0.690, P < 0.001) was found between the infiltration of CD163+ and CD68+ cells in GC, and multivariate Cox analysis confirmed the infiltration of CD163+ cells was a better predictor for prognosis than that of CD68+ cells. The combination of the infiltration of CD163+ and CD66b+ cells provided more accurate survival prediction than any individual marker. Patient subgroups with CD66blowCD163low (hazard ratio (HR) = 2.161; 95% confidence interval (CI) = 1.266–3.688; P < 0.001), CD66bhighCD163high (HR = 3.575; 95% CI = 2.155–5.933; P < 0.001), and CD66blowCD163high (HR = 7.514; 95% CI = 4.583–12.312; P < 0.001) were gradually associated with shorter DFS when compared with the subgroup with CD66bhighCD163low. The similar result was also for DSS among the subgroups. Moreover, the two‐marker model could more effectively discriminate the prognosis among the patients with chemotherapy than that among those without chemotherapy. We concluded that CD163+ TAMs were a more valuable prognostic marker than CD68+ TAMs, and CD163+ TAMs combined with CD66b+ TANs could more precisely predict the prognosis of patients with GC.
BackgroundThe NLRP3 inflammasome (NOD-like receptor family, pyrin domain containing 3) is an intracellular protein complex that plays an important role in innate immune sensing. Its activation leads to the maturation of caspase-1 and regulates the cleavage of interleukin (IL)-1β and IL-18. Various studies have shown that activation of the immune system plays a pivotal role in the development of fatigue. However, the mechanisms underlying the association between immune activation and fatigue remained elusive, and few reports have described the involvement of NLRP3 inflammasome activation in fatigue.MethodsWe established a mouse fatigue model with lipopolysaccharide (LPS, 3 mg/kg) challenge combined with swim stress. Both behavioural and biochemical parameters were measured to illustrate the characteristics of this model. We also assessed NLRP3 inflammasome activation in the mouse diencephalon, which is the brain region that has been suggested to be responsible for fatigue sensation. To further identify the role of NLRP3 inflammasome activation in the pathogenesis of chronic fatigue syndrome (CFS), NLRP3 KO mice were also subjected to LPS treatment and swim stress, and the same parameters were evaluated.ResultsMice challenged with LPS and subjected to the swim stress test showed decreased locomotor activity, decreased fall-off time in a rota-rod test and increased serum levels of IL-1β and IL-6 compared with untreated mice. Serum levels of lactic acid and malondialdehyde (MDA) were not significantly altered in the treated mice. We demonstrated increased NLRP3 expression, IL-1β production and caspase-1 activation in the diencephalons of the treated mice. In NLRP3 KO mice, we found remarkably increased locomotor activity with longer fall-off times and decreased serum IL-1β levels compared with those of wild-type (WT) mice after LPS challenge and the swim stress test. IL-1β levels in the diencephalon were also significantly decreased in the NLRP3 KO mice. By contrast, IL-6 levels were not significantly altered.ConclusionsThese findings suggest that LPS-induced fatigue is an IL-1β-dependent process and that the NLRP3/caspase-1 pathway is involved in the mechanisms of LPS-induced fatigue behaviours. NLRP3/caspase-1 inhibition may be a promising therapy for fatigue treatment.Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-016-0539-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.