Lithium-rich layered oxides with the capability to realize extraordinary capacity through anodic redox as well as classical cationic redox have spurred extensive attention. However, the oxygen-involving process inevitably leads to instability of the oxygen framework and ultimately lattice oxygen release from the surface, which incurs capacity decline, voltage fading, and poor kinetics. Herein, it is identified that this predicament can be diminished by constructing a spinel Li Mn O coating, which is inherently stable in the lattice framework to prevent oxygen release of the lithium-rich layered oxides at the deep delithiated state. The controlled KMnO oxidation strategy ensures uniform and integrated encapsulation of Li Mn O with structural compatibility to the layered core. With this layer suppressing oxygen release, the related phase transformation and catalytic side reaction that preferentially start from the surface are consequently hindered, as evidenced by detailed structural evolution during Li extraction/insertion. The heterostructure cathode exhibits highly competitive energy-storage properties including capacity retention of 83.1% after 300 cycles at 0.2 C, good voltage stability, and favorable kinetics. These results highlight the essentiality of oxygen framework stability and effectiveness of this spinel Li Mn O coating strategy in stabilizing the surface of lithium-rich layered oxides against lattice oxygen escaping for designing high-performance cathode materials for high-energy-density lithium-ion batteries.
The key bottleneck troubling the application of solid electrolyte is the contradictory requirements from Li-metal and cathode, which need high modulus to block Li-dendrite penetration and flexibility to enable low interface resistance, respectively. This study describes a thin asymmetrical design of solid electrolyte to address these shortcomings. In this architecture, a rigid ceramic-layer modified with an ultrathin polymer is toward Li-metal to accomplish dendrite-suppression of Li-anode, and a soft polymer-layer spreads over the exterior and interior of cathode to endow connected interface simultaneously. This ingenious arrangement endows solid Li-metal batteries with extremely high Coulombic efficiency and cyclability. This work will open up one avenue for realizing safe and long-life energy storage systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.