A very high resolution weather analysis system (VHRAS) of 50 m horizontal resolution is established based on LAPS. VHRAS utilizes the 3 hourly forecast data of the Unified Model (UM) of the Korea Meteorological Administration (KMA) with the horizontal resolution of 12 km as initial guess fields. The analysis system ingests the automatic weather station (AWS) data as input observations. The analysis system operates every hour for Seoul, Korea region in real time basis. It takes less than 10 minutes for one analysis cycle. The size of grid of the analysis domain is 800×660, respectively. The analysis results from December 2010 to February 2011 showed that the mean biases of temperature, maximum and minimum temperature were -0.07, 1.6, 0.2� C, respectively. The temperature in the central part of the city revealed relatively higher value than that of the surrounding mountainous areas, which showed a heat island feature. The heat island appears in zonal direction since the central city region is developed along a large river. Along the heat island, the eastern region was warmer than the western region. The warmer temperature in the western part of the heat island was caused by anthropogenic heat change in conjunction with the change of land use. This system will provide more reliable weather data and information in Seoul.
This paper reviews the results of recent observations in the Yeonsuri valley of Mt. Youngmun during springtime (March to May) in 2012. Automated weather stations were installed at twelve sites in the valley to measure temperature and 2, 3 dimensional wind. We examined temporal and spatial characteristics of temperatures and wind data. The Yeonsuri valley springtime average temperature lapse rate between the top and bottom of the entire period is -0.44 o C/100 m. It can be changed by the synoptic weather conditions, the lapse rates is greatest in order of clear days (-0.48 o C/100 m), rainy (-0.41 o C/100 m) and cloudy days (-0.40 o C/100 m). In the night, the temperature inversion layer (thermal belt) and the cold pool are formed within the valley. In addition, we measured temperature and wind distribution from the bottom to 3.5 m, the cold layers existed up to 1.5 m, which were affected by ground mixed layer. The results will provide useful guidance on agricultural practices as well as model simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.