The aim of this study was to evaluate the reinforcing effects of three types of fibers at various concentrations and in different combinations on flexural properties of denture base resin. Glass (GL), polyaromatic polyamide (PA) and ultra-high molecular weight polyethylene (PE) fibers were added to heat-polymerized denture base resin with volume concentrations of 2.6%, 5.3%, and 7.9%, respectively. In addition, hybrid fiber-reinforced composite (FRC) combined with either two or three types of fibers were fabricated. The flexural strength, modulus and toughness of each group were measured with a universal testing machine at a crosshead speed of 5 mm/min. In the single fiber-reinforced composite groups, the 5.3% GL and 7.9% GL had the highest flexural strength and modulus; 5.3% PE was had the highest toughness. Hybrid FRC such as GL/PE, which showed the highest toughness and the flexural strength, was considered to be useful in preventing denture fractures clinically.
The aims of this study were to evaluate the feasibility of 70% reduced inlay and 4-unit bridge models of International Standard (ISO 12836) assessing the accuracy of laboratory scanners to measure the accuracy of intraoral scanner. Four intraoral scanners (CS3500, Trios, Omnicam, and Bluecam) and one laboratory scanner (Ceramill MAP400) were used in this study. The height, depth, length, and angle of the models were measured from thirty scanned stereolithography (STL) images. There were no statistically significant mean deviations in distance accuracy and precision values of scanned images, except the angulation values of the inlay and 4-unit bridge models. The relative errors of inlay model and 4-unit bridge models quantifying the accuracy and precision of obtained mean deviations were less than 0.023 and 0.021, respectively. Thus, inlay and 4-unit bridge models suggested by this study is expected to be feasible tools for testing intraoral scanners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.