Subway infrastructure is a representative urban infrastructure for sustainable urban development as part of its policy to harmonize with economic growth. As the transportation infrastructure of large cities develops with high speed and intelligence, more attention will be paid to its safety. The main cause of death in subway fires is asphyxiation, due to the closed specificity of the underground space. Therefore, smoke exhaust facilities should be capable of minimizing the effects of smoke to ensure the safe evacuation of passengers in the event of fire. In this study, three kinds of fire locations are adopted to analyze the distribution of platform temperature, CO, and visibility in connection with the smoke exhaust system operation method. We evaluate the performance of the applicable smoke exhaust system from ASET-based untenable area analysis. Fatality evaluation by escape analysis according to the smoke exhaust system estimates the fatality based on the tenability performance evaluation. Moreover, the FED method was used to evaluate tenability performance. Therefore, the result of this study suggests a solution for sustainable subway Disaster response from the performance evaluation of the subway platform smoke exhaust system for safe evacuation of passengers, which is essential for subway construction or remodeling.
The rise in hydrogen fuel cell electric vehicles (FCEVs) is expected to pose a variety of hazards on the road. Vehicles using hydrogen could cause significant damage, owing to hydrogen vapor cloud explosions, jet fires caused by leakage, or hydrogen tank explosions. This risk is expected to further increase in semi-enclosed spaces, such as underground parking lots and road tunnels. Therefore, it is necessary to study the fire safety of hydrogen vehicles in semi-enclosed spaces. In this study, an experiment on hydrogen tank explosion was performed. In addition, the CFD numerical model was verified using the experimental results, and the damaging effect due to pressure propagation during hydrogen tank explosions in underground parking lots and road tunnels was analyzed using numerical analysis. From the experiment results, the hydrogen tank exploded at about 80 Mpa, a maximum incident pressure is generated 267 kPa at a distance of 1.9 m. As a result of numerical analysis based on the experimental results, the limit distance that can cause serious injury due to the explosion of a hydrogen tank in a road tunnel or underground parking lot was analyzed up to about 20 m from the point of explosion.
In semi-transverse ventilation system applied for road tunnel, adjustment of the port opening ratio is an essential part for uniform airflow rate per unit length over the entire tunnel. However, it has not been considered decently throughout the design process and operating of the tunnel. Therefore, in this study, we developed a program for the calculation of the opening size ratio of supply or exhaust port in transverse ventilation system and carried out the research to present a management plan for the port. In supply duct system, the opening size of the port had a tendency to increase and then decrease later when it gradually becomes closer toward the bulkhead at the beginning of the duct the minimum opening degree is to appeared as 56%. In the exhaust system, port size is the smallest at the beginning of duct as 15%, has shown a tendency to increase towards the bulk head. As results of estimating the air flow rate for 300 m intervals, the exhaust flow rate in the center of tunnel appeared to be extremely low as 8.1% and 12.5% when port size is constant and is adjusted supply type. Thus, even if the normal ventilation efficiency is declines, yet it is highly recommend adjusting the port size in order to obtain a uniform flow rate at fire accidents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.