An improved mathematical model and an improved particle swarm optimization (IPSO) are proposed for the complex design parameters and conflicting design goals of the indoor luminaire layout (ILL) problem. The ILL problem is formulated as a nonlinear constrained mixed-variable optimization problem that has four decision variables. For a general lighting scheme (GLS), the number and location of luminaires can be uniquely determined by optimizing four decision variables, which avoid using program loops to determine the number of luminaires. We improve the particle swarm optimization (PSO) in three aspects: (1) up-down probabilistic rounding (UDPR) method proposed to solve mixed integer, (2) improving the velocity of the best global particle, and (3) using nonlinear inertia weights with random items. The IPSO has better optimization results in an office study compared with the PSO and genetic algorithm (GA). The results are validated by DIALux simulation software, and a maximum deviation of 2.2% is found. The validated results show that the method using four decision variables increased the speed by 10.6% and the success rate by 23.33%. Furthermore, Indoor Luminaire Layout System APP is designed to provide guidelines visually for lighting designers and related researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.