Eukaryotic photosynthetic organelles, plastids, are the powerhouses of many aquatic and terrestrial ecosystems. The canonical plastid in algae and plants originated >1 billion years ago and therefore offers limited insights into the initial stages of organelle evolution. To address this issue, we focus here on the photosynthetic amoeba Paulinella micropora strain KR01 (hereafter, KR01) that underwent a more recent (ca. 124 Mya) primary endosymbiosis, resulting in a photosynthetic organelle termed the chromatophore. Analysis of genomic and transcriptomic data resulted in a high-quality draft assembly of size 707 Mbp and 32,361 predicted gene models. A total of 291 chromatophore targeted proteins were predicted in silico, 206 of which comprise the ancestral organelle proteome in photosynthetic Paulinella species with functions, among others, in nucleotide metabolism and oxidative stress response. Gene co-expression analysis identified networks containing known high light stress response genes as well as a variety of genes of unknown function (“dark” genes). We characterized diurnally rhythmic genes in this species and found that over 51% are dark. It was recently hypothesized that large double-stranded DNA viruses may have driven gene transfer to the nucleus in Paulinella and facilitated endosymbiosis. Our analyses do not support this idea, but rather suggest that these viruses in the KR01 and closely related P. micropora MYN1 genomes resulted from a more recent invasion.
The widespread algal and plant (Archaeplastida) plastid originated >1 billion years ago, therefore relatively little can be learned about plastid integration during the initial stages of primary endosymbiosis by studying these highly derived species. Here we focused on a unique model for endosymbiosis research, the photosynthetic amoeba Paulinella micropora KR01 (Rhizaria) that underwent a more recent independent primary endosymbiosis about 124 Mya. A total of 149 Gbp of PacBio and 19 Gbp of Illumina data were used to generate the draft assembly that comprises 7,048 contigs with N50=143,028 bp and a total length of 707Mbp. Genome GC-content was 44% with 76% repetitive sequences. We predicted 32,358 genes that contain 73% of the complete, conserved genes in the BUSCO database. The mean intron length was 882 bp, which is significantly greater than in other Rhizaria (86~184 bp).Symbiotic bacteria from the culture were isolated and completed genomes were generated from three species (Mesorhizobium amorphae Pch-S, Methylibium petroeiphilum Pch-M, Polaromonas sp. Pch-P) with one draft genome (Pimelobacter simplex Pch-N). Our holobiont data establish P. micropora KR01 as a model for studying plastid integration and the role of bacterial symbionts in Paulinella biology.
Microalgae not only serve as raw materials for biofuel but also have uses in the food, pharmaceutical, and cosmetic industries. However, regulated gene expression in microalgae has only been achieved in a few strains due to the lack of genome information and unstable transformation. This study developed a species-specific transformation system for an oleaginous microalga, Ettlia sp. YC001, using electroporation. The electroporation was optimized using three parameters (waveform, field strength, and number of pulses), and the final selection was a 5 kV cm −1 field strength using an exponential decay wave with one pulse. A new strong endogenous promoter CRT (Pcrt) was identified using transcriptome and quantitative PCR analysis of highly expressed genes during the late exponential growth phase. The activities of this promoter were characterized using a codon optimized cyan fluorescent protein (CFP) as a reporter. The expression of CFP was similar under Pcrt and under the constitutive promoter psaD (PpsaD). The developed transformation system using electroporation with the endogenous promoter is simple to prepare, is easy to operate with high repetition, and utilizes a species-specific vector for high expression. This system could be used not only in molecular studies on microalgae but also in various industrial applications of microalgae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.