The epitome that cell carrier serves solely as passive vehicles has become outdated. It is now evident that the carrier microenvironment also contributes in the regeneration process. In this study, a combination of alginate, pluronic F127 and extracellular matrix (ECM) component, hyaluronic acid (HA) based scaffold has been prepared for in situ gelling vehicles for muscle cells. ECM incorporated blended hydrogel showed enhanced uniform distribution of muscle cells in a nude mouse model forming the scaffold in situ allowed the muscle cells to proliferate efficiently, indicating that a pluronic F127/alginate/HA matrix provided a beneficial environment for cellular growth and expansion. The formation of gel beneath the skin of nude mice was confirmed using optical coherence tomography (OCT). OCT has been used to visualize the in situ localization of cells as well. This in situ gelation is found to be advantageous for regenerative applications due to the absence of toxic solvents or co-polymerization agents; besides the handling process is simple. This study demonstrates that an in situ blended hydrogels enables the favorable settlement of cells and satisfactory cell delivery for muscle regeneration applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.