This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment of various plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs.
Nanodiamonds (NDs) have been used as drug delivery vehicles due to their low toxicity and biocompatibility. Recently, it has been reported that NDs have also osteogenic differentiation capacity. However, their capacity using NDs alone is not enough. To significantly improve their osteogenic activity, we developed icariin (ICA)-functionalized NDs (ICA-NDs) and evaluated whether ICA-NDs enhance their in vitro osteogenic capacity. Unmodified NDs and ICA-NDs showed nanosized particles that were spherical in shape. The ICA-NDs achieved a prolonged ICA release for up to 4 weeks. The osteogenic capacities of NDs, ICA (10 μg)-NDs, and ICA (50 μg)-NDs were demonstrated by alkaline phosphatase (ALP) activity; calcium content; and mRNA gene levels of osteogenic-related markers, including ALP, runt-related transcript factor 2 (RUNX2), collagen type I alpha 1 (COL1A1), and osteopontin (OPN). In vitro cell studies revealed that ICA (50 μg)-ND-treated MC3T3-E1 cells greatly increased osteogenic markers, including ALP, calcium content, and mRNA gene levels of osteogenic-related markers, including ALP, RUNX2, COL1A1, and OPN compared to ICA (10 μg)-NDs or ND-treated cells. These our data suggest that ICA-NDs can promote osteogenic capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.